Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Spectroscopy of Air Discharge Plasmas Induced by a Gyrotron Beam

verfasst von : Kuniyoshi Tabata

Erschienen in: Beamed-mobility Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This comprehensive study explores the practicalities of beamed energy propulsion (BEP) systems, focusing on the spectroscopic measurements of air discharge plasmas within a microwave rocket’s nozzle. It unpacks the mechanism by which millimeter-wave energy is transformed into thrust via plasma generation and millimeter-wave supported detonation. Special attention is given to the non-equilibrium dynamics of neutral particles and ions in atmospheric millimeter-wave discharges. A practical method to investigate these dynamics is introduced through optical emission spectroscopy (OES), a nonintrusive technique capable of studying plasma without disturbing it. The study features real-world examples, adding practical value and feasibility to the theoretical aspects. This exploration substantiates BEP’s potential in revolutionizing space transportation, bringing substantial cost reduction and high efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kozhevnikova NA, Konchekov EM, Kossyi IA, Sarksyan KA, Stepakhin VD, Sysoev SO, Temchin SM, Kharchev NK (2019) Discharge in a subthreshold microwave beam as an effective means for mercaptan decomposition. Plasma Phys Rep 45:523. https://doi.org/10.1007/s11141017-9784-0CrossRef Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kozhevnikova NA, Konchekov EM, Kossyi IA, Sarksyan KA, Stepakhin VD, Sysoev SO, Temchin SM, Kharchev NK (2019) Discharge in a subthreshold microwave beam as an effective means for mercaptan decomposition. Plasma Phys Rep 45:523. https://​doi.​org/​10.​1007/​s11141017-9784-0CrossRef
Zurück zum Zitat Artemev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Malakhov DV, Moryakov IV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2022) Changes in structure of subthreshold discharge in air occurring with decreasing microwave radiation intensity. Plasma Phys Rep 48(2):170. https://doi.org/10.1134/S1063780X22020027CrossRef Artemev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Malakhov DV, Moryakov IV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2022) Changes in structure of subthreshold discharge in air occurring with decreasing microwave radiation intensity. Plasma Phys Rep 48(2):170. https://​doi.​org/​10.​1134/​S1063780X2202002​7CrossRef
Zurück zum Zitat Bogatov NA, Golubev SV, Zorin VG (1983) Ionizing radiation from a microwave discharge. Sov Tech Phys Lett 9(7):382 Bogatov NA, Golubev SV, Zorin VG (1983) Ionizing radiation from a microwave discharge. Sov Tech Phys Lett 9(7):382
Zurück zum Zitat Borodacheva TV, Semenov VE, Sov N (1985) Electrodynamics of the photoionization mechanism for gasdynamic propagation of a microwave discharge. Tech Phys Lett 30(9):1019 Borodacheva TV, Semenov VE, Sov N (1985) Electrodynamics of the photoionization mechanism for gasdynamic propagation of a microwave discharge. Tech Phys Lett 30(9):1019
Zurück zum Zitat Brodskii YY, Venediktov IP, Colubev SV, Zorin VG, Kossyi IA (1984) Nonequilibrium microwave discharge in air at atmospheric pressure. Sov Tech Phys Lett 10(2):77 Brodskii YY, Venediktov IP, Colubev SV, Zorin VG, Kossyi IA (1984) Nonequilibrium microwave discharge in air at atmospheric pressure. Sov Tech Phys Lett 10(2):77
Zurück zum Zitat TM Hamasaki, KN Ohnishi (2018) HPLA: International high power laser ablation symposium TM Hamasaki, KN Ohnishi (2018) HPLA: International high power laser ablation symposium
Zurück zum Zitat Komurasaki K, Shimamura K, Fukunari M, Oda Y, Imai T, Takahashi M, Katsurayama H, Ohnishi N (2017) Microwave rocket propelled by millimeter wave. J Plasma Fusion Res 93(10):465 Komurasaki K, Shimamura K, Fukunari M, Oda Y, Imai T, Takahashi M, Katsurayama H, Ohnishi N (2017) Microwave rocket propelled by millimeter wave. J Plasma Fusion Res 93(10):465
Zurück zum Zitat Litbak A (1991) Strong microwaves and terahertz waves: sources and applications, pp 267–286 Litbak A (1991) Strong microwaves and terahertz waves: sources and applications, pp 267–286
Zurück zum Zitat Plavcan J, Grolmusova Z, Rakovsky J, Cermak P, Veis P (2010) WDS’10 proceedings of contributed papers, Part II pp. 101–104 Plavcan J, Grolmusova Z, Rakovsky J, Cermak P, Veis P (2010) WDS’10 proceedings of contributed papers, Part II pp. 101–104
Zurück zum Zitat Sidorov AV, Razin SV, Golubev SV, Safronova MI, Fokin AP, Luchinin AG, Vodopyanov AV, Glyavin MY (2016) Measurement of plasma density in the discharge maintained in a nonuniform gas flow by a high-power terahertz-wave gyrotron. Physics Plasma 23(4):043511. https://doi.org/10.1063/1.4947219CrossRef Sidorov AV, Razin SV, Golubev SV, Safronova MI, Fokin AP, Luchinin AG, Vodopyanov AV, Glyavin MY (2016) Measurement of plasma density in the discharge maintained in a nonuniform gas flow by a high-power terahertz-wave gyrotron. Physics Plasma 23(4):043511. https://​doi.​org/​10.​1063/​1.​4947219CrossRef
Zurück zum Zitat Tabata K (2022) Study on atmospheric millimeter-wave discharge using gyrotron, Ph.D. dissertation submitted to the University of Tokyo Tabata K (2022) Study on atmospheric millimeter-wave discharge using gyrotron, Ph.D. dissertation submitted to the University of Tokyo
Zurück zum Zitat Tabata K, Harada Y, Nakamura Y, Komurasaki K, Koizumi H, Kariya T, Minami R (2020a) Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: observation of plasma structure and spectroscopic measurement of gas temperature. J Appl Phys 127(6):063301. https://doi.org/10.1063/1.5144157CrossRef Tabata K, Harada Y, Nakamura Y, Komurasaki K, Koizumi H, Kariya T, Minami R (2020a) Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: observation of plasma structure and spectroscopic measurement of gas temperature. J Appl Phys 127(6):063301. https://​doi.​org/​10.​1063/​1.​5144157CrossRef
Zurück zum Zitat Tabata K, Komurasaki K, Kariya T, Minami R (2020b) Optical emission spectroscopy of millimeter-wave discharge plasma for the measurement of vibrational and rotational temperatures. J Phys D Appl Phys 28(1):19 Tabata K, Komurasaki K, Kariya T, Minami R (2020b) Optical emission spectroscopy of millimeter-wave discharge plasma for the measurement of vibrational and rotational temperatures. J Phys D Appl Phys 28(1):19
Metadaten
Titel
Spectroscopy of Air Discharge Plasmas Induced by a Gyrotron Beam
verfasst von
Kuniyoshi Tabata
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4618-1_4