Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Experimental Studies of Microwave Discharge Induced by Gyrotron

verfasst von : Masafumi Fukunari

Erschienen in: Beamed-mobility Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter comprehensively reviews experimental investigations on gyrotron-induced microwave discharges and associated theories, comparing over-critical and under-critical conditions. Simple calculation models of the ionization threshold that separates over-critical and under-critical conditions are explained, and specific calculation examples are given. Filamentary structures of the induced plasma in over-critical and under-critical conditions are discussed with high-speed camera images. The study underscores the need for experiments on the ionization front’s propagation velocity in various incident beam frequencies for assessing microwave rocket’s thrust performance. Investigations also reveal limitations imposed by the transition from nonequilibrium to equilibrium discharge in the focusing optics of the incident beams and abnormal ignitions due to residual plasma.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Kolika LV, Konchekov EM, Kossyi IA, Malakhov DV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2018a) Discharge in the atmosphere in a Gaussian beam of subthreshold millimeter waves. JETP Lett 107:219–222. https://doi.org/10.1134/S0021364018040045CrossRef Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Kolika LV, Konchekov EM, Kossyi IA, Malakhov DV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2018a) Discharge in the atmosphere in a Gaussian beam of subthreshold millimeter waves. JETP Lett 107:219–222. https://​doi.​org/​10.​1134/​S002136401804004​5CrossRef
Zurück zum Zitat Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2018b) Discharge in a subthreshold microwave beam as an unusual type of ionization wave. Plasma Phys Rep 44:1146–1153. https://doi.org/10.1134/S1063780X18120012CrossRef Artem’ev KV, Batanov GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2018b) Discharge in a subthreshold microwave beam as an unusual type of ionization wave. Plasma Phys Rep 44:1146–1153. https://​doi.​org/​10.​1134/​S1063780X1812001​2CrossRef
Zurück zum Zitat Artem’ev KV, Batanova GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Moryakov IV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2020) Features of a supersonic ionization wave in argon at atmospheric pressure in a sub-threshold microwave field. Plasma Phys Rep 46:1220–1226. https://doi.org/10.1134/S1063780X20120016CrossRef Artem’ev KV, Batanova GM, Berezhetskaya NK, Borzosekov VD, Davydov AM, Kolik LV, Konchekov EM, Kossyi IA, Moryakov IV, Petrov AE, Sarksyan KA, Stepakhin VD, Kharchev NK (2020) Features of a supersonic ionization wave in argon at atmospheric pressure in a sub-threshold microwave field. Plasma Phys Rep 46:1220–1226. https://​doi.​org/​10.​1134/​S1063780X2012001​6CrossRef
Zurück zum Zitat Batanov GM, Grisinin SI, Kossyy IA, Magunov AN, Silakov VP, Tarasova NM (1985) High-pressure microwave discharges. In: Kovrizhnykh LM (ed) Plasma physics and plasma electronics. Nova Science Publishers, Commack, pp 241–282 Batanov GM, Grisinin SI, Kossyy IA, Magunov AN, Silakov VP, Tarasova NM (1985) High-pressure microwave discharges. In: Kovrizhnykh LM (ed) Plasma physics and plasma electronics. Nova Science Publishers, Commack, pp 241–282
Zurück zum Zitat Bogatov NA, Bykov YV, Venediktov NP, Golubev SV, Zorin VG, Eremeev AG, Semenov VE (1986) Gasdynamic propagation of a nonequilibrium microwave discharge. Sov J Plasma Phys 12(6):416–420 Bogatov NA, Bykov YV, Venediktov NP, Golubev SV, Zorin VG, Eremeev AG, Semenov VE (1986) Gasdynamic propagation of a nonequilibrium microwave discharge. Sov J Plasma Phys 12(6):416–420
Zurück zum Zitat Brodskii YY, Golubev SV, Zorin VG, Luchinin AG, Sernenov VE (1983) New mechanism of gasdynamic propagation of a discharge. Sov Phys JETP 57(5):989–993 Brodskii YY, Golubev SV, Zorin VG, Luchinin AG, Sernenov VE (1983) New mechanism of gasdynamic propagation of a discharge. Sov Phys JETP 57(5):989–993
Zurück zum Zitat Brodskii YY, Venediktov IP, Golubev SV, Zorin VG, Kossyi IA (1984) Nonequilibrium microwave discharge in air at atmospheric pressure. Sov Tech Phys Lett 10(2):77–79 Brodskii YY, Venediktov IP, Golubev SV, Zorin VG, Kossyi IA (1984) Nonequilibrium microwave discharge in air at atmospheric pressure. Sov Tech Phys Lett 10(2):77–79
Zurück zum Zitat Bufetov IA, Prokhorov AM, Fedorov VB, Fomin VK (1984) Optical discharge accompanying a restriction imposed on lateral expansion of gas and a reduction in the threshold of light-induced detonation. J Exp Theor Phys Lett 39:258–261 Bufetov IA, Prokhorov AM, Fedorov VB, Fomin VK (1984) Optical discharge accompanying a restriction imposed on lateral expansion of gas and a reduction in the threshold of light-induced detonation. J Exp Theor Phys Lett 39:258–261
Zurück zum Zitat Gil’denburg VB, Kim A (1980) Ionization-thermal instability of an rf discharge in an electromagnetic wave. Sov J Plasma Phys 6(4):496–499 Gil’denburg VB, Kim A (1980) Ionization-thermal instability of an rf discharge in an electromagnetic wave. Sov J Plasma Phys 6(4):496–499
Zurück zum Zitat Gil'denburg VB, Kim AV (1978) Ionization instabilities of an electromagnetic wave. Sov Phys JETP 47(1):72–75 Gil'denburg VB, Kim AV (1978) Ionization instabilities of an electromagnetic wave. Sov Phys JETP 47(1):72–75
Zurück zum Zitat Glyavin MY, Golubev SV, Izotov IV, Litvak AG, Luchinin AG, Razin SV, Sidorov AV, Skalyga VA, Vodopyanov AV (2014) A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band. Appl Phys Lett 105:174101. https://doi.org/10.1063/1.4900751CrossRef Glyavin MY, Golubev SV, Izotov IV, Litvak AG, Luchinin AG, Razin SV, Sidorov AV, Skalyga VA, Vodopyanov AV (2014) A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band. Appl Phys Lett 105:174101. https://​doi.​org/​10.​1063/​1.​4900751CrossRef
Zurück zum Zitat Gurevich AV, Brisove ND, Milikh GM (1997) Physics of microwave discharges:artificially ionized regions in the atmosphere. Gordon & Breach Science Publishers, Philadelphia Gurevich AV, Brisove ND, Milikh GM (1997) Physics of microwave discharges:artificially ionized regions in the atmosphere. Gordon & Breach Science Publishers, Philadelphia
Zurück zum Zitat Kartikeyan MV, Borie E, Thumm M (2004) Gyrotrons: high-power microwave and millimeter wave technology. Springer, ChamCrossRef Kartikeyan MV, Borie E, Thumm M (2004) Gyrotrons: high-power microwave and millimeter wave technology. Springer, ChamCrossRef
Zurück zum Zitat Litvak A (1991) Nonlinear dynamics of a freely localized gas discharge in microwave beams. Strong Microwave Plasma 1:267–286 Litvak A (1991) Nonlinear dynamics of a freely localized gas discharge in microwave beams. Strong Microwave Plasma 1:267–286
Zurück zum Zitat MacDonald D (1966) Microwave breakdown in gases. Wiley, New York MacDonald D (1966) Microwave breakdown in gases. Wiley, New York
Zurück zum Zitat Nusinovich GS (2004) Introduction to the physics of Gyrotrons. Johns Hopkins University Press, BaltimoreCrossRef Nusinovich GS (2004) Introduction to the physics of Gyrotrons. Johns Hopkins University Press, BaltimoreCrossRef
Zurück zum Zitat Raizer YP (1965) Heating of a gas by a powerful light pulse. Sov Phys JETP 21(5):1009–1017 Raizer YP (1965) Heating of a gas by a powerful light pulse. Sov Phys JETP 21(5):1009–1017
Zurück zum Zitat Raizer YP (1972) Propagation of a high-pressure microwave discharge. Sov Phys JETP 34(1):114–120 Raizer YP (1972) Propagation of a high-pressure microwave discharge. Sov Phys JETP 34(1):114–120
Zurück zum Zitat Raizer YP (1977) Laser-induced discharge phenomena. Plenum Pub Corp, New York Raizer YP (1977) Laser-induced discharge phenomena. Plenum Pub Corp, New York
Zurück zum Zitat Sakamoto K, Kasugai A, Takahashi K, Minami R, Kobayashi N, Kajiwara K (2007) Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous-wave gyrotron. Nat Phys 3:411–414. https://doi.org/10.1038/nphys599CrossRef Sakamoto K, Kasugai A, Takahashi K, Minami R, Kobayashi N, Kajiwara K (2007) Achievement of robust high-efficiency 1 MW oscillation in the hard-self-excitation region by a 170 GHz continuous-wave gyrotron. Nat Phys 3:411–414. https://​doi.​org/​10.​1038/​nphys599CrossRef
Zurück zum Zitat Shimozuma T, Idei H, Shapiro M, Temkin R, Ito S, Notake T, Kubo S, Yoshimura Y, Kobayashi S, Mizuno Y, Takita Y, Ohkubo K (2005) Alignment method of ech transmission lines based on the moment and phase retrieval method using ir images. J Plasma Fusion Res 81(3):191–196. https://doi.org/10.1585/jspf.81.191CrossRef Shimozuma T, Idei H, Shapiro M, Temkin R, Ito S, Notake T, Kubo S, Yoshimura Y, Kobayashi S, Mizuno Y, Takita Y, Ohkubo K (2005) Alignment method of ech transmission lines based on the moment and phase retrieval method using ir images. J Plasma Fusion Res 81(3):191–196. https://​doi.​org/​10.​1585/​jspf.​81.​191CrossRef
Zurück zum Zitat Tabata K, Harada Y, Nakamura Y, Komurasaki K, Koizumi H, Kariya T, Minami R (2020) Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: observation of plasma structure and spectroscopic measurement of gas temperature. J Appl Phys 127:063301. https://doi.org/10.1063/1.5144157CrossRef Tabata K, Harada Y, Nakamura Y, Komurasaki K, Koizumi H, Kariya T, Minami R (2020) Experimental investigation of ionization front propagating in a 28 GHz gyrotron beam: observation of plasma structure and spectroscopic measurement of gas temperature. J Appl Phys 127:063301. https://​doi.​org/​10.​1063/​1.​5144157CrossRef
Zurück zum Zitat Tatematsu Y, Yamaguchi Y, Idehara T, Kawase T, Ogawa I, Saito T, Fujiwara T (2014) Characteristics of the mode converter of Gyrotron FU CW GII radiating Gaussian beams in both the fundamental and second harmonic frequency bands. J Infrared Milli Terahz Waves 35:517–524. https://doi.org/10.1007/s10762-014-0072-1CrossRef Tatematsu Y, Yamaguchi Y, Idehara T, Kawase T, Ogawa I, Saito T, Fujiwara T (2014) Characteristics of the mode converter of Gyrotron FU CW GII radiating Gaussian beams in both the fundamental and second harmonic frequency bands. J Infrared Milli Terahz Waves 35:517–524. https://​doi.​org/​10.​1007/​s10762-014-0072-1CrossRef
Zurück zum Zitat Taylor WC, Scharfman WE, Morita T (1971) Voltage breakdown of microwave antennas. In: Advances in microwaves, vol 7. Academic, New York, pp 59–130 Taylor WC, Scharfman WE, Morita T (1971) Voltage breakdown of microwave antennas. In: Advances in microwaves, vol 7. Academic, New York, pp 59–130
Zurück zum Zitat Vikharev AL, Gil’denburg VB, Golubev SV, Eremin BG, Ivanov OA, Litvak AG, Stepanov AN, Yunakovskii AD (1988) Nonlinear dynamics of a freely localized microwave discharge in an electromagnetic wave beam. Sov Phys JETP 67(4):724–728 Vikharev AL, Gil’denburg VB, Golubev SV, Eremin BG, Ivanov OA, Litvak AG, Stepanov AN, Yunakovskii AD (1988) Nonlinear dynamics of a freely localized microwave discharge in an electromagnetic wave beam. Sov Phys JETP 67(4):724–728
Zurück zum Zitat Vikharev AL, Gorbachev AM, Kim AV, Kolysko AL (1992) Formation of the small-scale structure in a microwave discharge in high-pressure gas. Sov J Plasma Phys 18(8):554–560 Vikharev AL, Gorbachev AM, Kim AV, Kolysko AL (1992) Formation of the small-scale structure in a microwave discharge in high-pressure gas. Sov J Plasma Phys 18(8):554–560
Metadaten
Titel
Experimental Studies of Microwave Discharge Induced by Gyrotron
verfasst von
Masafumi Fukunari
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4618-1_5