Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Wireless Power Transfer Via Microwave for Mobilities

verfasst von : Kohei Shimamura, Maho Matsukura

Erschienen in: Beamed-mobility Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides a comprehensive review of microwave wireless power transmission, focusing on its application to the aircraft including the drone and unmanned aerial vehicles (UAVs). Focusing on the key element of these systems, the rectifier circuit, this work outlines the principles of rectification, application of high-frequency rectifiers, and specific band rectifier circuits. Furthermore, the chapter discusses the comparative advantages of wireless power transfer over battery systems for UAVs. It also delves into the feasibility of microwave-powered flight, examining factors such as beam collecting and capture efficiency, and RF-DC conversion efficiency. The dependency of operation frequency and the design of mobile devices for flight demonstration are analyzed as well. The research herein contributes significantly to the advancement of UAV technology and energy harvesting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Avanzini G, Giulietti T (2013) Maximum range for battery-powered aircraft. J Aircr 50(1):304–307CrossRef Avanzini G, Giulietti T (2013) Maximum range for battery-powered aircraft. J Aircr 50(1):304–307CrossRef
Zurück zum Zitat Blackwell T (2005) Recent demonstrations of laser power beaming at DFRC and MSFC. AIP Conf Proc 766:73CrossRef Blackwell T (2005) Recent demonstrations of laser power beaming at DFRC and MSFC. AIP Conf Proc 766:73CrossRef
Zurück zum Zitat Brown W (1969) Experiments Involving a Microwave Beam to Power and Position a Helicopter. IEEE Transact Aerospace Electron Sys AES-5(5):692–702CrossRef Brown W (1969) Experiments Involving a Microwave Beam to Power and Position a Helicopter. IEEE Transact Aerospace Electron Sys AES-5(5):692–702CrossRef
Zurück zum Zitat Brown WC (1977) Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system. Raytheon Co, Wayland, MA Brown WC (1977) Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system. Raytheon Co, Wayland, MA
Zurück zum Zitat Cabrera T, Alicia G-G, José M, Sánchez A, José A (2020) Wireless power transfer for electric vehicles: foundations and design approach. Springer, ChamCrossRef Cabrera T, Alicia G-G, José M, Sánchez A, José A (2020) Wireless power transfer for electric vehicles: foundations and design approach. Springer, ChamCrossRef
Zurück zum Zitat Chiou HK, Chen IS (2010) High-efficiency dual-band on-Chip Rectenna for 35- and 94-GHz wireless power transmission in 0.13-μm CMOS technology. IEEE Trans Microw Theory Tech 58(12) Chiou HK, Chen IS (2010) High-efficiency dual-band on-Chip Rectenna for 35- and 94-GHz wireless power transmission in 0.13-μm CMOS technology. IEEE Trans Microw Theory Tech 58(12)
Zurück zum Zitat Fujino Y, Fujita M (1998) Development of a high-efficiency Rectenna for wireless power transmission–application to a microwave-powered airship experiment. Rev Commun Res Lab 43(3):367–374 Fujino Y, Fujita M (1998) Development of a high-efficiency Rectenna for wireless power transmission–application to a microwave-powered airship experiment. Rev Commun Res Lab 43(3):367–374
Zurück zum Zitat Gur O, Rosen A (2009) Optimizing electric propulsion Systems for Unmanned Aerial Vehicles. J Aircr 46(4):1340–1353CrossRef Gur O, Rosen A (2009) Optimizing electric propulsion Systems for Unmanned Aerial Vehicles. J Aircr 46(4):1340–1353CrossRef
Zurück zum Zitat Gutmann RJ, Borrego JM (1979) Power combining in an array of microwave power rectifiers. IEEE Transac Microwave Theory Tech 27(12):958–968CrossRef Gutmann RJ, Borrego JM (1979) Power combining in an array of microwave power rectifiers. IEEE Transac Microwave Theory Tech 27(12):958–968CrossRef
Zurück zum Zitat Han Y, Han KK, Lin JJ, Fard GM (2016) Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visual Eng 4(1):1–8CrossRef Han Y, Han KK, Lin JJ, Fard GM (2016) Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visual Eng 4(1):1–8CrossRef
Zurück zum Zitat Hashimoto Y, Yuan Q, Aoki T (2018) Drone driven by microwave. 2018 Asia-Pacific microwave conference (APMC), Kyoto. 1444–1446 Hashimoto Y, Yuan Q, Aoki T (2018) Drone driven by microwave. 2018 Asia-Pacific microwave conference (APMC), Kyoto. 1444–1446
Zurück zum Zitat Hatano K, Shinohara N, Mitani T, Seki T, Kawashima M (2013) Development of 24GHz-Band MMIC Rectenna. Radio and Wireless Symposium (RWS) IEEE 50:199–201 Hatano K, Shinohara N, Mitani T, Seki T, Kawashima M (2013) Development of 24GHz-Band MMIC Rectenna. Radio and Wireless Symposium (RWS) IEEE 50:199–201
Zurück zum Zitat He P, Xu J, Zhao D (2020) A W-band Rectenna using on-Chip CMOS switching rectifier and on-PCB tapered slot antenna achieving 25% effective-power-conversion efficiency for wireless power transfer. IEEE/MTT-S International Microwave Symposium (IMS) 2020:1055–1058CrossRef He P, Xu J, Zhao D (2020) A W-band Rectenna using on-Chip CMOS switching rectifier and on-PCB tapered slot antenna achieving 25% effective-power-conversion efficiency for wireless power transfer. IEEE/MTT-S International Microwave Symposium (IMS) 2020:1055–1058CrossRef
Zurück zum Zitat Hemour S, Lorenz CHP, Wu K (2015) Small-footprint wideband 94GHz rectifier for swarm micro-robotics. 2015 IEEE MTT-S Int Microw Symp I:5–8 Hemour S, Lorenz CHP, Wu K (2015) Small-footprint wideband 94GHz rectifier for swarm micro-robotics. 2015 IEEE MTT-S Int Microw Symp I:5–8
Zurück zum Zitat Hu B, Li H, Li T, Wang H, Zhou Y, Zhao X, Hu X, Du X, Zhao Y, Li X, Qi T (2020) A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier. Energy Rep 7:1154CrossRef Hu B, Li H, Li T, Wang H, Zhou Y, Zhao X, Hu X, Du X, Zhao Y, Li X, Qi T (2020) A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier. Energy Rep 7:1154CrossRef
Zurück zum Zitat Kawashima N, Takeda K (2008) Laser energy transmission for a wireless energy supply to robot. In: Balaguer C, Abderrahim M (eds) Robotics and automation in construction. Intech, Rijeka Kawashima N, Takeda K (2008) Laser energy transmission for a wireless energy supply to robot. In: Balaguer C, Abderrahim M (eds) Robotics and automation in construction. Intech, Rijeka
Zurück zum Zitat Kazemi H (2022) 61.5% efficiency and 3.6 kW/m2 power handling Rectenna circuit demonstration for radiative millimeter wave wireless power transmission. IEEE Trans Microw Theory Tech 70(1):650–658CrossRef Kazemi H (2022) 61.5% efficiency and 3.6 kW/m2 power handling Rectenna circuit demonstration for radiative millimeter wave wireless power transmission. IEEE Trans Microw Theory Tech 70(1):650–658CrossRef
Zurück zum Zitat KR Li, KY See, WJ Koh, and JW Zhang (2017) Design of 2.45 GHz microwave wireless power transfer system for battery charging applications. 2017 Progress in electromagnetics research symposium-Fall (PIERS–FALL). pp 2417–2423 KR Li, KY See, WJ Koh, and JW Zhang (2017) Design of 2.45 GHz microwave wireless power transfer system for battery charging applications. 2017 Progress in electromagnetics research symposium-Fall (PIERS–FALL). pp 2417–2423
Zurück zum Zitat Litchfield M, Schafer S, Reveyrand T, Popović Z (2014) High-efficiency X-Band MMIC GaN power amplifiers operating as rectifiers. 2014 IEEE MTT-S International Microwave Symposium (IMS2014):1–4 Litchfield M, Schafer S, Reveyrand T, Popović Z (2014) High-efficiency X-Band MMIC GaN power amplifiers operating as rectifiers. 2014 IEEE MTT-S International Microwave Symposium (IMS2014):1–4
Zurück zum Zitat Matsui K et al (2017) Microstrip antenna and rectifier for wireless power transfar at 94 GHz. Proceedings of IEEE Wireless Power Transfer Conference (WPTC), Taipei, pp 1–3 Matsui K et al (2017) Microstrip antenna and rectifier for wireless power transfar at 94 GHz. Proceedings of IEEE Wireless Power Transfer Conference (WPTC), Taipei, pp 1–3
Zurück zum Zitat Mizojiri S et al. (2019) Demonstration of sub-terahertz coplanar rectenna using 265 GHz gyrotron, 2019 IEEE MTT-S wireless power transfer conference (WPTC), London Mizojiri S et al. (2019) Demonstration of sub-terahertz coplanar rectenna using 265 GHz gyrotron, 2019 IEEE MTT-S wireless power transfer conference (WPTC), London
Zurück zum Zitat Mizojiri S et al (2018) Subterahertz wireless power transmission using 303-GHz Rectenna and 300-kW-class Gyrotron. IEEE Microw Wireless Comp Lett 28(9):834–836CrossRef Mizojiri S et al (2018) Subterahertz wireless power transmission using 303-GHz Rectenna and 300-kW-class Gyrotron. IEEE Microw Wireless Comp Lett 28(9):834–836CrossRef
Zurück zum Zitat Mukherjee R, Heiges M, Matthies L (2010) Review of microautonomous vehicle sizing and power modelling. Micro- Nanotechnol Sensors Sys Applications II 7679:268–282 Mukherjee R, Heiges M, Matthies L (2010) Review of microautonomous vehicle sizing and power modelling. Micro- Nanotechnol Sensors Sys Applications II 7679:268–282
Zurück zum Zitat Nakamura M et al (2016) A 5.8 GHz-band high efficiency rectifier with a low resistance and high breakdown voltage GaAs Schottky Barrier Diode. IEICE Tech Rep 116(12):11–15 Nakamura M et al (2016) A 5.8 GHz-band high efficiency rectifier with a low resistance and high breakdown voltage GaAs Schottky Barrier Diode. IEICE Tech Rep 116(12):11–15
Zurück zum Zitat Nariman M, Shirinfar F, Pamarti S, Rofougaran A, Flaviis FD (2017) High-efficiency millimeter-wave energy-harvesting systems with Milliwatt-level output power. IEEE Transon circuits and systems-II 64(6):605CrossRef Nariman M, Shirinfar F, Pamarti S, Rofougaran A, Flaviis FD (2017) High-efficiency millimeter-wave energy-harvesting systems with Milliwatt-level output power. IEEE Transon circuits and systems-II 64(6):605CrossRef
Zurück zum Zitat Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomat 6(1):1–15CrossRef Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomat 6(1):1–15CrossRef
Zurück zum Zitat Nguyen DH, Suganuma S, Shimamura K, Mori K (2020) Millimeter wave power transfer to an autonomously controlled micro aerial vehicle. Transact JSASS 63(3):101–108 Nguyen DH, Suganuma S, Shimamura K, Mori K (2020) Millimeter wave power transfer to an autonomously controlled micro aerial vehicle. Transact JSASS 63(3):101–108
Zurück zum Zitat Nugent TJ, Kare JT (2010) Laser power for UAVs. In: Laser motive white paper-power beaming for UAVs. NWEN, Seattle, WA Nugent TJ, Kare JT (2010) Laser power for UAVs. In: Laser motive white paper-power beaming for UAVs. NWEN, Seattle, WA
Zurück zum Zitat Ohira T (2013) Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations. IEICE Electronics Express (ELEX) 10(11):1–9 Ohira T (2013) Power efficiency and optimum load formulas on RF rectifiers featuring flow-angle equations. IEICE Electronics Express (ELEX) 10(11):1–9
Zurück zum Zitat Pines DJ, Bohorquez F (2006) Challenges facing future micro-air-vehicle development. J Aircr 43:290–305CrossRef Pines DJ, Bohorquez F (2006) Challenges facing future micro-air-vehicle development. J Aircr 43:290–305CrossRef
Zurück zum Zitat Reveyrand T, Ramos I, Popovic Z (2012) Time-reversal duality of high-efficiency RF power amplifiers. Electron Lett 48(25):1607–1608CrossRef Reveyrand T, Ramos I, Popovic Z (2012) Time-reversal duality of high-efficiency RF power amplifiers. Electron Lett 48(25):1607–1608CrossRef
Zurück zum Zitat Rim CT, Mi C (2017) Wireless power transfer for electric vehicles and mobile devices. Wiley, New YorkCrossRef Rim CT, Mi C (2017) Wireless power transfer for electric vehicles and mobile devices. Wiley, New YorkCrossRef
Zurück zum Zitat Roberg M, Reveyrand T, Ramos I, Falkenstein EA, Popovic Z (2012) High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans Microw Theory Tech 60(12):4043–4052CrossRef Roberg M, Reveyrand T, Ramos I, Falkenstein EA, Popovic Z (2012) High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans Microw Theory Tech 60(12):4043–4052CrossRef
Zurück zum Zitat Rodenbeck C et al (2021) Microwave and millimeter wave power beaming. IEEE J Microwave 1(1):229CrossRef Rodenbeck C et al (2021) Microwave and millimeter wave power beaming. IEEE J Microwave 1(1):229CrossRef
Zurück zum Zitat Sakai N, Noguchi K, Itoh K (2020) 5.8 GHz band high efficiency 1 W rectenna with a short stub connected dipole antenna. IEICE Tech Rep 120(172):7–12 Sakai N, Noguchi K, Itoh K (2020) 5.8 GHz band high efficiency 1 W rectenna with a short stub connected dipole antenna. IEICE Tech Rep 120(172):7–12
Zurück zum Zitat Schafer S, Coffey M, Popović Z (2015) X-band wireless power transfer with two-stage high-efficiency GaN PA/rectifier. IEEE Wireless Power Transfer Conference (WPTC) 2015:1–3 Schafer S, Coffey M, Popović Z (2015) X-band wireless power transfer with two-stage high-efficiency GaN PA/rectifier. IEEE Wireless Power Transfer Conference (WPTC) 2015:1–3
Zurück zum Zitat Schlesak J, Alden A, Ohno T (1988) A microwave powered high altitude platform. In: Proceedings of the IEEE MTT-S International Microwave Symposium Digest. IEEE, New York, pp 283–286 Schlesak J, Alden A, Ohno T (1988) A microwave powered high altitude platform. In: Proceedings of the IEEE MTT-S International Microwave Symposium Digest. IEEE, New York, pp 283–286
Zurück zum Zitat Shaulov E, Jameson S, Socher E (2017) W-band energy harvesting rectenna array in 65-nm CMOS. IEEE MTT-S International Microwave Symposium (IMS) 2017:307–310CrossRef Shaulov E, Jameson S, Socher E (2017) W-band energy harvesting rectenna array in 65-nm CMOS. IEEE MTT-S International Microwave Symposium (IMS) 2017:307–310CrossRef
Zurück zum Zitat Shimamura K et al (2017) Feasibility study of microwave wireless powered flight for micro air vehicles. Wireless Power Transfer 4(2):146–159CrossRef Shimamura K et al (2017) Feasibility study of microwave wireless powered flight for micro air vehicles. Wireless Power Transfer 4(2):146–159CrossRef
Zurück zum Zitat Shinohara N (2013) Beam control technologies with a high-efficiency phased Array for microwave power transmission in Japan. Proc IEEE 101(6):1448–1463CrossRef Shinohara N (2013) Beam control technologies with a high-efficiency phased Array for microwave power transmission in Japan. Proc IEEE 101(6):1448–1463CrossRef
Zurück zum Zitat Song BD, Park K, Kim J (2018) Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput Ind Eng 120:418–428CrossRef Song BD, Park K, Kim J (2018) Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput Ind Eng 120:418–428CrossRef
Zurück zum Zitat Suganuma S et al (2021) 28 GHz microwave-powered propulsion efficiency for free flight demonstration. J Spacecr Rocket 59:342CrossRef Suganuma S et al (2021) 28 GHz microwave-powered propulsion efficiency for free flight demonstration. J Spacecr Rocket 59:342CrossRef
Zurück zum Zitat Sugimori K, Oosaki K, Ueda H (1999) RF to DC energy converter electron tube for SPS system application (Part2) -comparison with the simulation results. Memoirs of National Institute of Technology Kurume College 15(1):5–10. (in Japanese) Sugimori K, Oosaki K, Ueda H (1999) RF to DC energy converter electron tube for SPS system application (Part2) -comparison with the simulation results. Memoirs of National Institute of Technology Kurume College 15(1):5–10. (in Japanese)
Zurück zum Zitat Suh YH, Chang K (2002) A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans Microw Theory Tech 50(7):1784–1789CrossRef Suh YH, Chang K (2002) A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans Microw Theory Tech 50(7):1784–1789CrossRef
Zurück zum Zitat Suh I-S et al (2015) Wireless charging technology and the future of electric transportation. SAE international, Warrendale, PA Suh I-S et al (2015) Wireless charging technology and the future of electric transportation. SAE international, Warrendale, PA
Zurück zum Zitat Sun H, Guo Y, He M, Zhong Z (2012) Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett 11:929–932CrossRef Sun H, Guo Y, He M, Zhong Z (2012) Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett 11:929–932CrossRef
Zurück zum Zitat Tornerro JLG, García MP, Quirós RG, Arnause JCS (2016) Design of Ku-band wireless power transfer system to empower light drones. 2016 IEEE wireless power transfer conference (WPTC) Aveiro. pp 1–4 Tornerro JLG, García MP, Quirós RG, Arnause JCS (2016) Design of Ku-band wireless power transfer system to empower light drones. 2016 IEEE wireless power transfer conference (WPTC) Aveiro. pp 1–4
Zurück zum Zitat Torresan C, Berton A, Caronenuto F, Gennaro SFD, Gioli B, Matese A, Miglietta F, Vagnoli C, Zaldei A, Wallace L (2017) Forestry applications of UAVs in Europe: a review. Int J Remote Sens 38(8–10):2427–2447CrossRef Torresan C, Berton A, Caronenuto F, Gennaro SFD, Gioli B, Matese A, Miglietta F, Vagnoli C, Zaldei A, Wallace L (2017) Forestry applications of UAVs in Europe: a review. Int J Remote Sens 38(8–10):2427–2447CrossRef
Zurück zum Zitat Traub LW (2011) Range and endurance estimates for battery-powered aircraft. J Aircr 48(2):703–707CrossRef Traub LW (2011) Range and endurance estimates for battery-powered aircraft. J Aircr 48(2):703–707CrossRef
Zurück zum Zitat Vanke VA, Savvin VL, Boudzinski IA, Bykovski SV (1995) Development of cyclotron wave converter. Abstracts of the Second International Wireless Power Transmission Conference WPT’95, October, Japan Vanke VA, Savvin VL, Boudzinski IA, Bykovski SV (1995) Development of cyclotron wave converter. Abstracts of the Second International Wireless Power Transmission Conference WPT’95, October, Japan
Zurück zum Zitat Wang C, Yang B, Shinohara N (2021a) Study and design of a 2.45-GHz rectifier achieving 91% efficiency at 5-W input power. IEEE Microw Wirel Compon Lett 31(1):76–79CrossRef Wang C, Yang B, Shinohara N (2021a) Study and design of a 2.45-GHz rectifier achieving 91% efficiency at 5-W input power. IEEE Microw Wirel Compon Lett 31(1):76–79CrossRef
Zurück zum Zitat Wang Y, Wei G, Dong S, Dong Y, Yu X, Li X (2021b) A high-efficiency self-synchronous RF–DC rectifier based on time-reversal duality for wireless power transfer applications. Electronics 11:90CrossRef Wang Y, Wei G, Dong S, Dong Y, Yu X, Li X (2021b) A high-efficiency self-synchronous RF–DC rectifier based on time-reversal duality for wireless power transfer applications. Electronics 11:90CrossRef
Zurück zum Zitat Watson DC, Grow RW, Johnson CC (1971) A cyclotron-wave rectifier for S-band and X-band. IEEE Trans Electron ED-18(1):3CrossRef Watson DC, Grow RW, Johnson CC (1971) A cyclotron-wave rectifier for S-band and X-band. IEEE Trans Electron ED-18(1):3CrossRef
Zurück zum Zitat N Weissman, S Jameson, and E Socher (2014) Wband CMOS on-chip energy harvester and rectenna. IEEE MTT-S Int Microw Symp Dig. pp 1–3 N Weissman, S Jameson, and E Socher (2014) Wband CMOS on-chip energy harvester and rectenna. IEEE MTT-S Int Microw Symp Dig. pp 1–3
Zurück zum Zitat Wu P, Chen Y, Zhou W, Ren ZH, Huang SY (2020) A wide dynamic range rectifier array based on automatic input power distribution technique. IEEE Microw Wirel Compon Lett 30(4):437–440CrossRef Wu P, Chen Y, Zhou W, Ren ZH, Huang SY (2020) A wide dynamic range rectifier array based on automatic input power distribution technique. IEEE Microw Wirel Compon Lett 30(4):437–440CrossRef
Zurück zum Zitat Yang X et al (2008) X-band circularly polarized rectennas for microwave power transmission applications. J Electron 25:389 Yang X et al (2008) X-band circularly polarized rectennas for microwave power transmission applications. J Electron 25:389
Zurück zum Zitat Ye J, Yang C, Zhang Y (2016) Design and experiment of a rectenna array base on GaAs transistor for microwave power transmission. 2016 IEEE international conference on microwave and millimeter-wave technology (ICMMT), Beijing, pp 323–326 Ye J, Yang C, Zhang Y (2016) Design and experiment of a rectenna array base on GaAs transistor for microwave power transmission. 2016 IEEE international conference on microwave and millimeter-wave technology (ICMMT), Beijing, pp 323–326
Zurück zum Zitat Yoo TW, Chang K (1992) Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Transac MTT 40(6):1259–1266CrossRef Yoo TW, Chang K (1992) Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Transac MTT 40(6):1259–1266CrossRef
Zurück zum Zitat Yoshida S, Nishikawa K, Kawasaki S (2019) 10W class high power C-band rectifier using GaN HEMT. IEEE Wireless Power Transfer Conference (WPTC) 2019:595–598CrossRef Yoshida S, Nishikawa K, Kawasaki S (2019) 10W class high power C-band rectifier using GaN HEMT. IEEE Wireless Power Transfer Conference (WPTC) 2019:595–598CrossRef
Zurück zum Zitat Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13(6):673–712CrossRef Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13(6):673–712CrossRef
Zurück zum Zitat Zhao X, Tuo X, Ge Q, Peng Y (2017) Research on the high power cyclotron-wave rectifier. Phys plasma 24(7):073117CrossRef Zhao X, Tuo X, Ge Q, Peng Y (2017) Research on the high power cyclotron-wave rectifier. Phys plasma 24(7):073117CrossRef
Zurück zum Zitat Zhao D, He P, Wang X (2019) Millimeter-wave rectenna and rectifying circuits for far-distance wireless power transfer. 2019 12th Global Symposium on Millimeter Waves (GSMM). pp 90–92 Zhao D, He P, Wang X (2019) Millimeter-wave rectenna and rectifying circuits for far-distance wireless power transfer. 2019 12th Global Symposium on Millimeter Waves (GSMM). pp 90–92
Metadaten
Titel
Wireless Power Transfer Via Microwave for Mobilities
verfasst von
Kohei Shimamura
Maho Matsukura
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4618-1_1