Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2023

01.07.2023 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic Phase Transitions in Ultrathin YFeO3 Films According to Synchrotron Mössbauer Reflectometry Data

verfasst von: V. V. Izyurov, A. P. Nosov, I. V. Gribov, M. A. Andreeva

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The magnetic properties of ultrathin single-crystal Y57FeO3 orthoferrite films have been studied by Mössbauer reflectometry. Mössbauer spectra were measured using the ESRF synchrotron in the reflection geometry. As the temperature changes from 3.6 to about 773 K, the splitting of the Zeeman sextet in the spectra successively decreases and, simultaneously, a quadrupole doublet appears in them, which indicates the development of a magnetic phase transition. From the temperature dependences of the magnetic hyperfine field Bhf for the main orthorhombic Y57FeO3 phase, Néel temperatures equal to TN ≈ 593, 562, and 567 K and the critical parameter values equal to β ≈ (0.28–0.3) ± 0.02 are determined in films with thicknesses of 28, 6.5, and 4 nm, respectively. An analysis of changing ratio of the line intensities in the Zeeman sextet with temperature makes it possible to trace the successive rotation of the direction of the antiferromagnetic axes in Y57FeO3 toward the surface plane with an increase in the temperature and a decrease in the film thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat S. A. Nikitov, A. R. Safin, D. V. Kalyabin, A. V. Sadovnikov, E. N. Beginin, M. V. Logunov, M. A. Morozova, S. A. Odintsov, S. A. Osokin, A. Yu. Sharaevskaya, Yu. P. Sharaevskii, and A. I. Kirilyuk, “Dielectric magnonics: From gigahertz to terahertz,” Phys. Usp. 190, 945–974 (2020). https://doi.org/10.3367/UFNe.2019.07.038609CrossRef S. A. Nikitov, A. R. Safin, D. V. Kalyabin, A. V. Sadovnikov, E. N. Beginin, M. V. Logunov, M. A. Morozova, S. A. Odintsov, S. A. Osokin, A. Yu. Sharaevskaya, Yu. P. Sharaevskii, and A. I. Kirilyuk, “Dielectric magnonics: From gigahertz to terahertz,” Phys. Usp. 190, 945–974 (2020). https://​doi.​org/​10.​3367/​UFNe.​2019.​07.​038609CrossRef
3.
Zurück zum Zitat I. E. Dzyaloshinskii, “Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances,” Sov. Phys. JETP 5, 1259–1272 (1957). I. E. Dzyaloshinskii, “Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances,” Sov. Phys. JETP 5, 1259–1272 (1957).
11.
Zurück zum Zitat R. Salazar-Rodriguez, D. Aliaga-Guerra, and K. Taddei, “X-ray diffraction, Mössbauer spectroscopy, neutron diffraction, optical absorption and ab-initio calculation of magnetic process in orthorhombic YFexCr(1 – x)O3 (0 ≤ x ≤ 1) compounds,” Hyperfine Interact. 240, 82–83 (2019). https://doi.org/10.1007/s10751-019-1619-2CrossRef R. Salazar-Rodriguez, D. Aliaga-Guerra, and K. Taddei, “X-ray diffraction, Mössbauer spectroscopy, neutron diffraction, optical absorption and ab-initio calculation of magnetic process in orthorhombic YFexCr(1 – x)O3 (0 ≤ x ≤ 1) compounds,” Hyperfine Interact. 240, 82–83 (2019). https://​doi.​org/​10.​1007/​s10751-019-1619-2CrossRef
15.
18.
Zurück zum Zitat G. S. Krinchik, Physics of Magnetic Phenomena (Izd-vo Mosk. Univ., Moscow, 1985). G. S. Krinchik, Physics of Magnetic Phenomena (Izd-vo Mosk. Univ., Moscow, 1985).
19.
Zurück zum Zitat V. M. Cherepanov and S. S. Yakimov, “Investigation of the critical behavior of yttrium orthoferrite YFeO3 with the aid of the Mössbauer effect,” JETP Lett. 19, 392 (1974). V. M. Cherepanov and S. S. Yakimov, “Investigation of the critical behavior of yttrium orthoferrite YFeO3 with the aid of the Mössbauer effect,” JETP Lett. 19, 392 (1974).
24.
Zurück zum Zitat T. Mitsui, S. Sakai, S. Li, T. Ueno, T. Watanuki, Y. Kobayashi, R. Masuda, M. Seto, and H. Akai, “Magnetic Friedel oscillation at the Fe(001) surface: Direct observation by atomic-layer-resolved synchrotron radiation 57Fe Mössbauer spectroscopy,” Phys. Rev. Lett. 125, 236806–236807 (2020). https://doi.org/10.1103/physrevlett.125.236806CrossRef T. Mitsui, S. Sakai, S. Li, T. Ueno, T. Watanuki, Y. Kobayashi, R. Masuda, M. Seto, and H. Akai, “Magnetic Friedel oscillation at the Fe(001) surface: Direct observation by atomic-layer-resolved synchrotron radiation 57Fe Mössbauer spectroscopy,” Phys. Rev. Lett. 125, 236806–236807 (2020). https://​doi.​org/​10.​1103/​physrevlett.​125.​236806CrossRef
25.
30.
Zurück zum Zitat E. Varouti, E. Devlin, Y. Sanakis, M. Pissas, C. Christides, G. Tomara, P. K. Karahaliou, S. N. Georga, and C. A. Krontiras, “A systematic Mössbauer spectroscopy study of Y3Fe5O12 samples displaying different magnetic ac-susceptibility and electric permittivity spectra,” J. Magn. Magn. Mater. 495, 165881 (2019). https://doi.org/10.1016/j.jmmm.2019.165881CrossRef E. Varouti, E. Devlin, Y. Sanakis, M. Pissas, C. Christides, G. Tomara, P. K. Karahaliou, S. N. Georga, and C. A. Krontiras, “A systematic Mössbauer spectroscopy study of Y3Fe5O12 samples displaying different magnetic ac-susceptibility and electric permittivity spectra,” J. Magn. Magn. Mater. 495, 165881 (2019). https://​doi.​org/​10.​1016/​j.​jmmm.​2019.​165881CrossRef
31.
Zurück zum Zitat A. L. Irshinski, V. I. Ozhogin, V. M. Cherepanov, and S. S. Yakimov, “Critical behavior of iron borate of yttrium-iron garnet,” J. Exp. Theor. Phys. 49, 563–569 (1979). A. L. Irshinski, V. I. Ozhogin, V. M. Cherepanov, and S. S. Yakimov, “Critical behavior of iron borate of yttrium-iron garnet,” J. Exp. Theor. Phys. 49, 563–569 (1979).
33.
Zurück zum Zitat H. M. Widatallah, C. Johnson, S. H. Al-Harthi, A. M. Gismelseed, A. D. Al-Rawas, S. J. Stewart, M. E. Elzain, I. A. Al-Omari, and A. A. Yousif, “A structural and Mössbauer study of Y3Fe5O12 nanoparticles prepared with high energy ball milling and subsequent sintering,” Hyperfine Interact. 183, 87–92 (2008). https://doi.org/10.1007/s10751-008-9734-5CrossRef H. M. Widatallah, C. Johnson, S. H. Al-Harthi, A. M. Gismelseed, A. D. Al-Rawas, S. J. Stewart, M. E. Elzain, I. A. Al-Omari, and A. A. Yousif, “A structural and Mössbauer study of Y3Fe5O12 nanoparticles prepared with high energy ball milling and subsequent sintering,” Hyperfine Interact. 183, 87–92 (2008). https://​doi.​org/​10.​1007/​s10751-008-9734-5CrossRef
34.
Zurück zum Zitat V. G. Kostishin, V. V. Korovushkin, A. G. Nalogin, S. V. Shcherbakov, I. M. Isaev, A. A. Alekseev, A. Yu. Mironovich, and D. V. Salogub, “Features of the magnetic structure of Y3Fe5O12 polycrystals synthesized by radiation thermal sintering,” Phys. Solid State 62, 1156–1164 (2020). https://doi.org/10.1134/s1063783420070124CrossRef V. G. Kostishin, V. V. Korovushkin, A. G. Nalogin, S. V. Shcherbakov, I. M. Isaev, A. A. Alekseev, A. Yu. Mironovich, and D. V. Salogub, “Features of the magnetic structure of Y3Fe5O12 polycrystals synthesized by radiation thermal sintering,” Phys. Solid State 62, 1156–1164 (2020). https://​doi.​org/​10.​1134/​s106378342007012​4CrossRef
39.
Zurück zum Zitat M. A. Andreeva, V. V. Panchuk, and B. Lindgren, “REFTIM, Version 7.4,” http://www.esrf.eu/Instrumentation/software/data-analysis/OurSoftware/REFTIM-1. M. A. Andreeva, V. V. Panchuk, and B. Lindgren, “REFTIM, Version 7.4,” http://​www.​esrf.​eu/​Instrumentation/​software/​data-analysis/​OurSoftware/​REFTIM-1.​
40.
Zurück zum Zitat M. A. Andreeva and C. Rosete, “Theory of reflection from Mossbauer mirror. Taking account of laminar variation in the parameters of the hypefine interactions close to the surface,” Vestn. Mosk. Univ. Fiz. 41 (3), 57–62 (1986). M. A. Andreeva and C. Rosete, “Theory of reflection from Mossbauer mirror. Taking account of laminar variation in the parameters of the hypefine interactions close to the surface,” Vestn. Mosk. Univ. Fiz. 41 (3), 57–62 (1986).
43.
Zurück zum Zitat V. I. Ozhogin, V. M. Cherepanov, and S. S. Yakimov, “Effect of anisotropy on field-induced antiferromagnetism in YFeO3,” Sov. Phys.-JETP 40, 517–520 (1974). V. I. Ozhogin, V. M. Cherepanov, and S. S. Yakimov, “Effect of anisotropy on field-induced antiferromagnetism in YFeO3,” Sov. Phys.-JETP 40, 517–520 (1974).
45.
Zurück zum Zitat B. A. Gizhevskiĭ, Yu. P. Sukhorukov, E. A. Gan’shina, N. N. Loshkareva, A. V. Telegin, N. I. Lobachevskaya, V. S. Gaviko, and V. P. Pilyugin, “Optical and magneto-optical properties of nanostructured yttrium iron garnet,” Phys. solid state 51, 1836–1842 (2009). https://doi.org/10.1134/S1063783409090121CrossRef B. A. Gizhevskiĭ, Yu. P. Sukhorukov, E. A. Gan’shina, N. N. Loshkareva, A. V. Telegin, N. I. Lobachevskaya, V. S. Gaviko, and V. P. Pilyugin, “Optical and magneto-optical properties of nanostructured yttrium iron garnet,” Phys. solid state 51, 1836–1842 (2009). https://​doi.​org/​10.​1134/​S106378340909012​1CrossRef
46.
Zurück zum Zitat M. A. Andreeva, R. A. Baulin, A. I. Chumakov, R. Rüffer, G. V. Smirnov, Yu. A. Babanov, D. I. Devyaterikov, M. A. Milyaev, D. A. Ponomarev, L. N. Romashev, and V. V. Ustinov, “Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the synchrotron Mössbauer source,” J. Synchrotron Radiat. 25, 473–483 (2018). https://doi.org/10.1107/s1600577517017192CrossRef M. A. Andreeva, R. A. Baulin, A. I. Chumakov, R. Rüffer, G. V. Smirnov, Yu. A. Babanov, D. I. Devyaterikov, M. A. Milyaev, D. A. Ponomarev, L. N. Romashev, and V. V. Ustinov, “Nuclear resonance reflectivity from a [57Fe/Cr]30 multilayer with the synchrotron Mössbauer source,” J. Synchrotron Radiat. 25, 473–483 (2018). https://​doi.​org/​10.​1107/​s160057751701719​2CrossRef
47.
Zurück zum Zitat R. A. Baulin, M. A. Andreeva, L. Häggström, V. E. Asadchikov, B. Roshchin, A. I. Chumakov, D. Bessas, and R. Rüffer, “Unique surface sensitivity to ferro- and antiferromagnetic phases by polarization analysis in synchrotron Mössbauer reflectivity,” Surf. Interfaces 27, 101521 (2021). https://doi.org/10.1016/j.surfin.2021.101521CrossRef R. A. Baulin, M. A. Andreeva, L. Häggström, V. E. Asadchikov, B. Roshchin, A. I. Chumakov, D. Bessas, and R. Rüffer, “Unique surface sensitivity to ferro- and antiferromagnetic phases by polarization analysis in synchrotron Mössbauer reflectivity,” Surf. Interfaces 27, 101521 (2021). https://​doi.​org/​10.​1016/​j.​surfin.​2021.​101521CrossRef
48.
Zurück zum Zitat K. G. Gurtovoĭ, A. S. Lagutin, and V. M. Cherepanov, “Magnetic phase transitions in orthoferrite with a Morin point,” Sov. Phys. JETP 41, 369 (1975). K. G. Gurtovoĭ, A. S. Lagutin, and V. M. Cherepanov, “Magnetic phase transitions in orthoferrite with a Morin point,” Sov. Phys. JETP 41, 369 (1975).
Metadaten
Titel
Magnetic Phase Transitions in Ultrathin YFeO3 Films According to Synchrotron Mössbauer Reflectometry Data
verfasst von
V. V. Izyurov
A. P. Nosov
I. V. Gribov
M. A. Andreeva
Publikationsdatum
01.07.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23600963

Weitere Artikel der Ausgabe 7/2023

Physics of Metals and Metallography 7/2023 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Secondary Phases in MgB2 Superconducting Ceramics