Skip to main content

27.04.2024 | Original Paper

The localized meshless method of lines for the approximation of two-dimensional reaction-diffusion system

verfasst von: Manzoor Hussain, Abdul Ghafoor

Erschienen in: Numerical Algorithms

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinear coupled reaction-diffusion systems often arise in cooperative processes of chemical kinetics and biochemical reactions. Owing to these potential applications, this article presents an efficient and simple meshless approximation scheme to analyze the solution behavior of a two-dimensional coupled Brusselator system. On considering radial basis functions in the localized settings, meshless shape functions owing Kronecker delta function property are constructed to discretize the spatial derivatives in the time-dependent partial differential equation (PDE). A system of first-order ordinary differential equations (ODEs), obtained after spatial discretization, is then integrated in time via a high-order ODE solver. The proposed scheme’s convergence, stability, and efficiency are theoretically established and numerically verified on several benchmark problems. The outcomes verify reliability, accuracy, and simplicity of the proposed scheme against the available methods in the literature. Some recommendations are made regarding time-step size under different node distributions and RBFs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbasbandy, S., Shivanian, E.: Construction of pseudospectral meshless radial point interpolation for sobolev equation with error analysis. Int. J. Ind. Math. 14(2), 183–195 (2022) Abbasbandy, S., Shivanian, E.: Construction of pseudospectral meshless radial point interpolation for sobolev equation with error analysis. Int. J. Ind. Math. 14(2), 183–195 (2022)
2.
Zurück zum Zitat Abbasbandy, S., Shivanian, E., AL-Jizani, K.H.: On the analysis of a kind of nonlinear Sobolev equation through locally applied pseudo-spectral meshfree radial point interpolation. Numer. Methods Partial Differ. Equ. 37(1), 462–478 (2021) Abbasbandy, S., Shivanian, E., AL-Jizani, K.H.: On the analysis of a kind of nonlinear Sobolev equation through locally applied pseudo-spectral meshfree radial point interpolation. Numer. Methods Partial Differ. Equ. 37(1), 462–478 (2021)
3.
Zurück zum Zitat Abbasbandy, S., Shivanian, E., AL-Jizani, K.H., Atluri, S.N.: Pseudospectral meshless radial point interpolation for generalized biharmonic equation subject to simply supported and clamped boundary conditions. Eng. Anal. Bound. Elem. 125, 23–32 (2021) Abbasbandy, S., Shivanian, E., AL-Jizani, K.H., Atluri, S.N.: Pseudospectral meshless radial point interpolation for generalized biharmonic equation subject to simply supported and clamped boundary conditions. Eng. Anal. Bound. Elem. 125, 23–32 (2021)
4.
Zurück zum Zitat Abbasbandy, S., Sladek, V., Shirzadi, A., Sladek, J.: Numerical simulations for coupled pair of diffusion equations by MLPG method. Comput. Model. Eng. Sci. 71(1), 15–37 (2011)MathSciNet Abbasbandy, S., Sladek, V., Shirzadi, A., Sladek, J.: Numerical simulations for coupled pair of diffusion equations by MLPG method. Comput. Model. Eng. Sci. 71(1), 15–37 (2011)MathSciNet
5.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation. Eng. Comput. 37, 873–889 (2021)CrossRef Abbaszadeh, M., Dehghan, M.: Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation. Eng. Comput. 37, 873–889 (2021)CrossRef
6.
Zurück zum Zitat Abbaszadeh, M., Golmohammadi, M., Dehghan, M.: Simulation of activator-inhibitor dynamics based on cross-diffusion Brusselator reaction-diffusion system via a differential quadrature-radial point interpolation method (DQ-RPIM) technique. Eur. Phys. J. Plus 136, 59 (2021)CrossRef Abbaszadeh, M., Golmohammadi, M., Dehghan, M.: Simulation of activator-inhibitor dynamics based on cross-diffusion Brusselator reaction-diffusion system via a differential quadrature-radial point interpolation method (DQ-RPIM) technique. Eur. Phys. J. Plus 136, 59 (2021)CrossRef
7.
Zurück zum Zitat Abdelmalek, S., Kirane, M., Youkana, A.: A Lyapunov functional for a triangular reaction-diffusion system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 36(1), 80–85 (2013)MathSciNetCrossRef Abdelmalek, S., Kirane, M., Youkana, A.: A Lyapunov functional for a triangular reaction-diffusion system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 36(1), 80–85 (2013)MathSciNetCrossRef
8.
Zurück zum Zitat Alqahtani, A.M.: Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic. J. Math. Chem. 56, 1543–1566 (2018)MathSciNetCrossRef Alqahtani, A.M.: Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic. J. Math. Chem. 56, 1543–1566 (2018)MathSciNetCrossRef
9.
Zurück zum Zitat Ang, W.T.: The two-dimensional reaction–diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Boundary Elem. 27, 897–903 (2003)CrossRef Ang, W.T.: The two-dimensional reaction–diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Boundary Elem. 27, 897–903 (2003)CrossRef
10.
Zurück zum Zitat Bhatt, H.P., Khaliq, A.Q.M.: The locally extrapolated time differencing LOD scheme for multidimensional reaction-diffusion systems. J. Comput. Appl. Math. 285, 256–278 (2015)MathSciNetCrossRef Bhatt, H.P., Khaliq, A.Q.M.: The locally extrapolated time differencing LOD scheme for multidimensional reaction-diffusion systems. J. Comput. Appl. Math. 285, 256–278 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M.: Variational multi scale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Eng. 300, 770–797 (2016)CrossRef Dehghan, M., Abbaszadeh, M.: Variational multi scale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Eng. 300, 770–797 (2016)CrossRef
12.
Zurück zum Zitat Dehghan, M., Mohammadi, V.: The boundary knot method for the solution of two dimensional advection reaction-diffusion and Brusselator equations. Int. J. Numer. Methods for Heat & Fluid Flow 31(1), 106–133 (2021)CrossRef Dehghan, M., Mohammadi, V.: The boundary knot method for the solution of two dimensional advection reaction-diffusion and Brusselator equations. Int. J. Numer. Methods for Heat & Fluid Flow 31(1), 106–133 (2021)CrossRef
13.
Zurück zum Zitat Fatahi, H., S.-Nadjafi, J., Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J. Comput. Appl. Math. 294, 196–209 (2016) Fatahi, H., S.-Nadjafi, J., Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J. Comput. Appl. Math. 294, 196–209 (2016)
14.
Zurück zum Zitat Haberman, R.: Applied partial differential equations with Fourier series and boundary value problems, 5th edn. Pearson Education, USA (2013) Haberman, R.: Applied partial differential equations with Fourier series and boundary value problems, 5th edn. Pearson Education, USA (2013)
15.
Zurück zum Zitat Haq, S., Hussain, M., Ghafoor, A.: A computational study of variable coefficients fractional advection-diffusion-reaction equations via implicit meshless spectral algorithm. Eng. Comput. 36, 1243–1263 (2020)CrossRef Haq, S., Hussain, M., Ghafoor, A.: A computational study of variable coefficients fractional advection-diffusion-reaction equations via implicit meshless spectral algorithm. Eng. Comput. 36, 1243–1263 (2020)CrossRef
17.
Zurück zum Zitat Hussain, M.: Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation. Comput. Appl. Math. 40, 49. Article Number: 107 (2021) Hussain, M.: Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation. Comput. Appl. Math. 40, 49. Article Number: 107 (2021)
18.
Zurück zum Zitat Hussain, M., Haq, S.: Numerical solutions of strongly nonlinear generalized Burgers-Fisher equation by meshless spectral technique. Int. J. Comput. Math. 98(9), 1727–1748. Article ID: 1846729 (2020) Hussain, M., Haq, S.: Numerical solutions of strongly nonlinear generalized Burgers-Fisher equation by meshless spectral technique. Int. J. Comput. Math. 98(9), 1727–1748. Article ID: 1846729 (2020)
19.
Zurück zum Zitat Siraj-ul-Islam, Ali, A., Haq, S.: A computational modeling of the behaviour of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34, 3896–3909 (2010) Siraj-ul-Islam, Ali, A., Haq, S.: A computational modeling of the behaviour of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34, 3896–3909 (2010)
20.
Zurück zum Zitat Jiwari, R., Yuan, J.: A computational modeling of two dimensional reaction diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52, 1535–1551 (2014)MathSciNetCrossRef Jiwari, R., Yuan, J.: A computational modeling of two dimensional reaction diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52, 1535–1551 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Kolinichenko, A., Ryashko, L.: Stochastic sensitivity analysis of stationary patterns in spatially extended systems. Math. Methods Appl. Sci. 44(16), 12194–12202 (2021)MathSciNetCrossRef Kolinichenko, A., Ryashko, L.: Stochastic sensitivity analysis of stationary patterns in spatially extended systems. Math. Methods Appl. Sci. 44(16), 12194–12202 (2021)MathSciNetCrossRef
22.
Zurück zum Zitat Kumar, S., Jiwari, R., Mittal, R.C.: Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes. J. Math. Chem. 57, 149–179 (2019)MathSciNetCrossRef Kumar, S., Jiwari, R., Mittal, R.C.: Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes. J. Math. Chem. 57, 149–179 (2019)MathSciNetCrossRef
23.
Zurück zum Zitat Leppänen, T.: The theory of Turing pattern formation, preprint (2004) Leppänen, T.: The theory of Turing pattern formation, preprint (2004)
24.
Zurück zum Zitat Mittal, R.C., Jiwari, R.: Numerical study of two-dimensional reaction diffusion Brusselator system. Appl. Math. Comput. 217(12), 5404–5415 (2011)MathSciNet Mittal, R.C., Jiwari, R.: Numerical study of two-dimensional reaction diffusion Brusselator system. Appl. Math. Comput. 217(12), 5404–5415 (2011)MathSciNet
25.
Zurück zum Zitat Mohammadi, M., Mokhtari, R., Schaback, R.: A meshless method for solving the 2D Brusselator reaction-diffusion system. Comput. Model. Eng. Sci. 101(2), 113–138 (2014)MathSciNet Mohammadi, M., Mokhtari, R., Schaback, R.: A meshless method for solving the 2D Brusselator reaction-diffusion system. Comput. Model. Eng. Sci. 101(2), 113–138 (2014)MathSciNet
26.
Zurück zum Zitat Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. John Wiley & Sons, New York, NY, USA (1977) Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems. John Wiley & Sons, New York, NY, USA (1977)
27.
Zurück zum Zitat Oruç, Ö.: An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation. Eng. Comput. 36, 839–856 (2020)CrossRef Oruç, Ö.: An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation. Eng. Comput. 36, 839–856 (2020)CrossRef
28.
Zurück zum Zitat Oruç, Ö.: A local meshfree radial point interpolation method for Berger equation arising in modelling of thin plates. Appl. Math. Model. 122, 555–571 (2023)MathSciNetCrossRef Oruç, Ö.: A local meshfree radial point interpolation method for Berger equation arising in modelling of thin plates. Appl. Math. Model. 122, 555–571 (2023)MathSciNetCrossRef
29.
Zurück zum Zitat Oruç, Ö.: A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations. Eng. Anal. Boundary Elem. 129, 55–66 (2021)MathSciNetCrossRef Oruç, Ö.: A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations. Eng. Anal. Boundary Elem. 129, 55–66 (2021)MathSciNetCrossRef
30.
Zurück zum Zitat Oruç, Ö.: A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov-Rubenchik equations. Appl. Math. Comput. 394, 125787 (2021)MathSciNet Oruç, Ö.: A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov-Rubenchik equations. Appl. Math. Comput. 394, 125787 (2021)MathSciNet
31.
Zurück zum Zitat Oruç, Ö.: A strong-form local meshless approach based on radial basis function-finite difference (RBF-FD) method for solving multi-dimensional coupled damped Schrödinger system appearing in Bose-Einstein condensates. Commun. Nonlinear Sci. Numer. Simul. 104, 106042 (2022)CrossRef Oruç, Ö.: A strong-form local meshless approach based on radial basis function-finite difference (RBF-FD) method for solving multi-dimensional coupled damped Schrödinger system appearing in Bose-Einstein condensates. Commun. Nonlinear Sci. Numer. Simul. 104, 106042 (2022)CrossRef
32.
Zurück zum Zitat Oruç, Ö.: Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials. Appl. Math. Model. 74, 441–456 (2019)MathSciNetCrossRef Oruç, Ö.: Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials. Appl. Math. Model. 74, 441–456 (2019)MathSciNetCrossRef
33.
Zurück zum Zitat Oruç, Ö.: Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation. Comput. Math. Appl. 79(12), 3272–3288 (2020)MathSciNetCrossRef Oruç, Ö.: Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation. Comput. Math. Appl. 79(12), 3272–3288 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(4), 1695–1700 (1968)CrossRef Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(4), 1695–1700 (1968)CrossRef
35.
Zurück zum Zitat Safari, F.: Solving multi-dimensional inverse heat problems via an accurate RBF-based meshless technique. Int. J. Heat Mass Transf. 209, 124100 (2023)CrossRef Safari, F.: Solving multi-dimensional inverse heat problems via an accurate RBF-based meshless technique. Int. J. Heat Mass Transf. 209, 124100 (2023)CrossRef
36.
Zurück zum Zitat Safari, F., Chen, W.: Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations. Comput. Math. Appl. 78(5), 1594–1607 (2019)MathSciNetCrossRef Safari, F., Chen, W.: Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations. Comput. Math. Appl. 78(5), 1594–1607 (2019)MathSciNetCrossRef
37.
Zurück zum Zitat Safari, F., Qingshan, T., Chen, W.: Time discretization for modeling migration of groundwater contaminant in the presence of micro-organisms via a semi-analytic method. Comput. Math. Appl. 151, 397–407 (2023)MathSciNetCrossRef Safari, F., Qingshan, T., Chen, W.: Time discretization for modeling migration of groundwater contaminant in the presence of micro-organisms via a semi-analytic method. Comput. Math. Appl. 151, 397–407 (2023)MathSciNetCrossRef
38.
Zurück zum Zitat Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Advances in Computational Mechanics 2 (2009) Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Advances in Computational Mechanics 2 (2009)
39.
Zurück zum Zitat Schiesser, W.E.: The numerical method of lines: Integration of partial differential equations. Academic Press, San Diego, California (1991) Schiesser, W.E.: The numerical method of lines: Integration of partial differential equations. Academic Press, San Diego, California (1991)
40.
Zurück zum Zitat Schiesser, W.E., Griffiths, G.W.: A compendium of partial differential equation models: method of lines analysis with MATLAB. Cambridge University Press, New York (2009)CrossRef Schiesser, W.E., Griffiths, G.W.: A compendium of partial differential equation models: method of lines analysis with MATLAB. Cambridge University Press, New York (2009)CrossRef
41.
Zurück zum Zitat Shakeri, F., Dehghan, M.: The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput. Math. Appl. 62(12), 4322–4336 (2011)MathSciNetCrossRef Shakeri, F., Dehghan, M.: The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput. Math. Appl. 62(12), 4322–4336 (2011)MathSciNetCrossRef
42.
Zurück zum Zitat Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng. Anal. Boundary Elem. 54, 1–12 (2015)MathSciNetCrossRef Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng. Anal. Boundary Elem. 54, 1–12 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Shirzadi, A., Sladek, V., Sladek, J.: A meshless simulations for 2D nonlinear reaction-diffusion Brusselator system. Comput. Model. Eng. Sci. 95(4), 259–282 (2013)MathSciNet Shirzadi, A., Sladek, V., Sladek, J.: A meshless simulations for 2D nonlinear reaction-diffusion Brusselator system. Comput. Model. Eng. Sci. 95(4), 259–282 (2013)MathSciNet
44.
Zurück zum Zitat Simmons, G.F.: Differential Equations with Applications and Historical Notes, Mcgraw Hill Series in Mechanical Engineering, 2nd edn. McGraw-Hill Education, New York (2016) Simmons, G.F.: Differential Equations with Applications and Historical Notes, Mcgraw Hill Series in Mechanical Engineering, 2nd edn. McGraw-Hill Education, New York (2016)
45.
Zurück zum Zitat Trefethen, L.N.: Spectral methods in MATLAB. SIAM Publications, Philadelphia (2000)CrossRef Trefethen, L.N.: Spectral methods in MATLAB. SIAM Publications, Philadelphia (2000)CrossRef
46.
Zurück zum Zitat Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the Brusselator reaction diffusion system. J. Math. Chem. 26, 297–316 (1999)MathSciNetCrossRef Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the Brusselator reaction diffusion system. J. Math. Chem. 26, 297–316 (1999)MathSciNetCrossRef
47.
Zurück zum Zitat Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58(9), 3919–3930 (1973)CrossRef Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58(9), 3919–3930 (1973)CrossRef
48.
Zurück zum Zitat Verwer, J.G., Hundsdorfer, W.H., Sommeijer, B.P.: Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math. 57, 157–178 (1990)MathSciNetCrossRef Verwer, J.G., Hundsdorfer, W.H., Sommeijer, B.P.: Convergence properties of the Runge-Kutta-Chebyshev method. Numer. Math. 57, 157–178 (1990)MathSciNetCrossRef
49.
Zurück zum Zitat Wendland, H.: A high-order approximation method for semilinear parabolic equations on spheres. Math. Comput. 82(281), 227–245 (2013)MathSciNetCrossRef Wendland, H.: A high-order approximation method for semilinear parabolic equations on spheres. Math. Comput. 82(281), 227–245 (2013)MathSciNetCrossRef
50.
Zurück zum Zitat Yimnak, K., Luadsong, A.: A local integral equation formulation based on moving kriging interpolation for solving coupled nonlinear reaction-diffusion equations. Adv. Math. Phys. 2014, 7. Article ID 196041 (2014) Yimnak, K., Luadsong, A.: A local integral equation formulation based on moving kriging interpolation for solving coupled nonlinear reaction-diffusion equations. Adv. Math. Phys. 2014, 7. Article ID 196041 (2014)
51.
Zurück zum Zitat Zhang, J., Yan, G.: Lattice Boltzmann simulation of pattern formation under cross-diffusion. Comput. Math. Appl. 69(3), 157–169 (2015)MathSciNetCrossRef Zhang, J., Yan, G.: Lattice Boltzmann simulation of pattern formation under cross-diffusion. Comput. Math. Appl. 69(3), 157–169 (2015)MathSciNetCrossRef
52.
Zurück zum Zitat Zhou, J.: Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law. Comput. Math. Appl. 66(10), 2003–2018 (2013)MathSciNetCrossRef Zhou, J.: Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law. Comput. Math. Appl. 66(10), 2003–2018 (2013)MathSciNetCrossRef
Metadaten
Titel
The localized meshless method of lines for the approximation of two-dimensional reaction-diffusion system
verfasst von
Manzoor Hussain
Abdul Ghafoor
Publikationsdatum
27.04.2024
Verlag
Springer US
Erschienen in
Numerical Algorithms
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-024-01842-8

Premium Partner