Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2023

01.08.2023 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Influence of Frictional Treatment and Low-Temperature Plasma Carburizing on the Microhardness and Electromagnetic Properties of Metastable Austenitic Steel

verfasst von: R. A. Savrai, P. A. Skorynina, A. V. Makarov, L. Kh. Kogan, A. I. Men’shakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microhardness and electromagnetic properties of corrosion-resistant austenitic chromium–nickel steel (16.80 wt % Cr, 8.44 wt % Ni) subjected to carburizing in electron beam plasma at temperatures of 350 and 500°C, to frictional treatment with a sliding indenter, and to that combined frictional treatment and plasma carburizing have been investigated. It has been established that plasma carburizing results in an increase in the microhardness of the steel surface from 200 to 1100 HV0.025. The total depth of hardening is 25 μm after carburizing at T = 350°C and 300 μm after carburizing at T = 500°C. Frictional treatment results in an increase in the microhardness of steel to 600 HV0.025 at a total depth of hardening of 500 μm. It has been shown that a diffusion-active layer with a dispersed structure formed after preliminary frictional treatment contributes to an additional hardening of steel to 1275 HV0.025 upon subsequent low-temperature carburizing at 350°C. The combined treatment with carburizing at a temperature of Т = 500°C results in an increase in the microhardness of steel to 820 HV0.025, and the total depth of hardening is 500 μm for both modes of combined treatment. It has also been established that plasma carburizing of studied steel results in a decrease in the readings of an eddy current device compared to quenched steel and their increase compared to steel subjected to frictional treatment, which can be used to develop techniques to control the quality of such treatments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat A. V. Makarov, N. V. Gavrilov, G. V. Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of continuous and gas-cyclic plasma nitriding on the quality of nanostructured surface of austenitic stainless steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017). https://doi.org/10.17212/1994-6309-2017-2-55-66 A. V. Makarov, N. V. Gavrilov, G. V. Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of continuous and gas-cyclic plasma nitriding on the quality of nanostructured surface of austenitic stainless steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017). https://​doi.​org/​10.​17212/​1994-6309-2017-2-55-66
5.
Zurück zum Zitat A. V. Makarov, G. V. Samoylova, N. V. Gavrilov, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” Vektor Nauki Tol’yattinsk. Gos. Univ., No. 4, 67–74 (2017). A. V. Makarov, G. V. Samoylova, N. V. Gavrilov, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” Vektor Nauki Tol’yattinsk. Gos. Univ., No. 4, 67–74 (2017).
6.
Zurück zum Zitat A. V. Makarov, G. V. Samoylova, N. V. Gavrilov, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” AIP Conf. Proc. 1915, 30011 (2017). https://doi.org/10.1063/1.5017331CrossRef A. V. Makarov, G. V. Samoylova, N. V. Gavrilov, A. S. Mamaev, A. L. Osintseva, T. E. Kurennykh, and R. A. Savrai, “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” AIP Conf. Proc. 1915, 30011 (2017). https://​doi.​org/​10.​1063/​1.​5017331CrossRef
7.
Zurück zum Zitat N. V. Lezhnin, A. V. Makarov, N. V. Gavrilov, A. L. Osintseva, and R. A. Savrai, “Improving the scratch test properties of plasma-nitrided stainless austenitic steel by preliminary nanostructuring frictional treatment,” AIP Conf. Proc. 2053, 40050 (2018). https://doi.org/10.1063/1.5084488CrossRef N. V. Lezhnin, A. V. Makarov, N. V. Gavrilov, A. L. Osintseva, and R. A. Savrai, “Improving the scratch test properties of plasma-nitrided stainless austenitic steel by preliminary nanostructuring frictional treatment,” AIP Conf. Proc. 2053, 40050 (2018). https://​doi.​org/​10.​1063/​1.​5084488CrossRef
8.
Zurück zum Zitat Liu Zh., Y. Peng, Ch. Chen, J. Gong, and Y. Jiang, “Effect of surface nanocrystallization on low-temperature gas carburization for AISI 316L austenitic stainless steel,” Int. J. Pressure Vessels Piping 182, 104053 (2020).CrossRef Liu Zh., Y. Peng, Ch. Chen, J. Gong, and Y. Jiang, “Effect of surface nanocrystallization on low-temperature gas carburization for AISI 316L austenitic stainless steel,” Int. J. Pressure Vessels Piping 182, 104053 (2020).CrossRef
17.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and V. S. Gaviko, “The influence of frictional treatment and low-temperature plasma carburizing on the structure and phase composition of metastable austenitic steel,” Phys. Met. Metallogr. 124, 496–503 (2023). https://doi.org/10.1134/S0031918X23600483CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and V. S. Gaviko, “The influence of frictional treatment and low-temperature plasma carburizing on the structure and phase composition of metastable austenitic steel,” Phys. Met. Metallogr. 124, 496–503 (2023). https://​doi.​org/​10.​1134/​S0031918X2360048​3CrossRef
23.
Zurück zum Zitat A. V. Makarov, E. S. Gorkunov, P. A. Skorynina, L. Kh. Kogan, A. S. Yurovskikh, and A. L. Osintseva, “Eddy-current control of the phase composition and hardness of metastable austenitic steel after different regimes of nanostructuring frictional treatment,” Russ. J. Nondestr. Test. 52, 627–637 (2016). https://doi.org/10.1134/s1061830916110048CrossRef A. V. Makarov, E. S. Gorkunov, P. A. Skorynina, L. Kh. Kogan, A. S. Yurovskikh, and A. L. Osintseva, “Eddy-current control of the phase composition and hardness of metastable austenitic steel after different regimes of nanostructuring frictional treatment,” Russ. J. Nondestr. Test. 52, 627–637 (2016). https://​doi.​org/​10.​1134/​s106183091611004​8CrossRef
27.
Zurück zum Zitat A. V. Makarov, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, R. A. Savrai, and A. L. Osintseva, “Eddy-current testing of the hardness, wear resistance, and thickness of coatings prepared by gas-powder laser cladding,” Russ. J. Nondestr. Test. 45, 797–805 (2009). https://doi.org/10.1134/s1061830909110060CrossRef A. V. Makarov, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, R. A. Savrai, and A. L. Osintseva, “Eddy-current testing of the hardness, wear resistance, and thickness of coatings prepared by gas-powder laser cladding,” Russ. J. Nondestr. Test. 45, 797–805 (2009). https://​doi.​org/​10.​1134/​s106183090911006​0CrossRef
31.
Zurück zum Zitat V. V. Dyakin and V. A. Sandovskii, Theory and Calculation of Attachable Eddy-Current Converters (Nauka, Moscow, 1981) [in Russian]. V. V. Dyakin and V. A. Sandovskii, Theory and Calculation of Attachable Eddy-Current Converters (Nauka, Moscow, 1981) [in Russian].
32.
Zurück zum Zitat A. L. Dorofeev, Induction Structuroscopy (Energiya, Moscow, 1973) [in Russian]. A. L. Dorofeev, Induction Structuroscopy (Energiya, Moscow, 1973) [in Russian].
33.
Zurück zum Zitat A. V. Makarov, R. A. Savrai, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, N. A. Pozdejeva, and Yu. M. Kolobylin, “Effect of friction-induced hardening on the features of magnetic and eddy-current behavior of an annealed structural steel under cyclic loading conditions,” Russ. J. Nondestr. Test. 44, 496–508 (2008). https://doi.org/10.1134/s1061830908070085CrossRef A. V. Makarov, R. A. Savrai, E. S. Gorkunov, I. Yu. Malygina, L. Kh. Kogan, N. A. Pozdejeva, and Yu. M. Kolobylin, “Effect of friction-induced hardening on the features of magnetic and eddy-current behavior of an annealed structural steel under cyclic loading conditions,” Russ. J. Nondestr. Test. 44, 496–508 (2008). https://​doi.​org/​10.​1134/​s106183090807008​5CrossRef
34.
Zurück zum Zitat M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Nondestructive Testing (Nauka, Moscow, 1993) [in Russian]. M. N. Mikheev and E. S. Gorkunov, Magnetic Methods of Structural Analysis and Nondestructive Testing (Nauka, Moscow, 1993) [in Russian].
36.
Zurück zum Zitat L. Kh. Kogan, A. P. Nichipuruk, and L. D. Gavrilova, “Effect of the carbon content on the magnetic and electric properties of thermally treated carbon steels and the possibilities of testing the quality of tempering of articles produced from them via the eddy-current method,” Russ. J. Nondestr. Test. 42, 616–629 (2006). https://doi.org/10.1134/S1061830906090063CrossRef L. Kh. Kogan, A. P. Nichipuruk, and L. D. Gavrilova, “Effect of the carbon content on the magnetic and electric properties of thermally treated carbon steels and the possibilities of testing the quality of tempering of articles produced from them via the eddy-current method,” Russ. J. Nondestr. Test. 42, 616–629 (2006). https://​doi.​org/​10.​1134/​S106183090609006​3CrossRef
Metadaten
Titel
The Influence of Frictional Treatment and Low-Temperature Plasma Carburizing on the Microhardness and Electromagnetic Properties of Metastable Austenitic Steel
verfasst von
R. A. Savrai
P. A. Skorynina
A. V. Makarov
L. Kh. Kogan
A. I. Men’shakov
Publikationsdatum
01.08.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23601166

Weitere Artikel der Ausgabe 8/2023

Physics of Metals and Metallography 8/2023 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structural Phase State of High-Entropy NbTiHfVZr Alloy

ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic Properties of Layered Ni/Cu Nanowires