Skip to main content
Erschienen in: Physics of Metals and Metallography 9/2023

01.09.2023 | STRENGTH AND PLASTICITY

Study of Low-Temperature Thermomechanical Behavior of the Ti–18Zr–15Nb Superelastic Alloy under Different Temperature-Rate Conditions

verfasst von: M. A. Derkach, V. A. Sheremetyev, A. V. Korotitskiy, S. D. Prokoshkin

Erschienen in: Physics of Metals and Metallography | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomedical shape-memory Ti–18Zr–15Nb alloy (at %) was subjected to upsetting with a true strain e = 0.7 in three different regimes: within a temperature range from 20 to 600°C at a deformation rate ξ = 0.1 s–1; at temperatures of 250 and 300°C at deformation rates ξ = 0.1, 1, and 10 s–1; and deformation at a temperature of 300°C and a rate ξ = 0.1 s–1 after annealing at a temperature of 300°C for different times (τ = 10, 60, 300, 600, and 1200 s). It has been established that the conditional yield stress σ0.2 continuously decreases with increasing temperature and, at the same time, the maximum stress σmax is observed to grow within this deformation temperature range of 250–300°C. In the region of temperatures from 200 to 400°C, fluctuations with an amplitude growing with an increase in the temperature are observed in the yield curves. The change in σ0.2 and σmax and the presence of fluctuations in the strain diagrams are produced by dynamic strain aging accompanied by the precipitation of excessive ω-phase particles at temperatures of 200–400°C. An increase in the deformation rate at temperatures of 250–300°C has a strong effect on the deformation behavior of this alloy due to considerable additional deformation-induced heating. Thus, an increase in the deformation rate to ξ = 10 s–1 leads to a jump-like decrease in the stress starting from e ≈ 0.3, afterwards the plastic yield curve takes a wavy shape with a low stress fluctuation frequency. The body-centered cubic (BCC) β-phase is the major phase after all the regimes of thermomechanical tests. Some weak ω-phase lines are observed after annealing at 300°C with exposure for more than 300 s, and essentially broadened ω-phase lines appear for the aged alloy after deformation only with long-term exposure (1200 s).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
4.
Zurück zum Zitat V. Sheremetyev, M. Petrzhik, Yu. Zhukova, A. Kazakbiev, A. Arkhipova, M. Moisenovich, S. Prokoshkin, and V. Brailovski, “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti–Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Part B 108, 647–662 (2020). https://doi.org/10.1002/jbm.b.34419CrossRef V. Sheremetyev, M. Petrzhik, Yu. Zhukova, A. Kazakbiev, A. Arkhipova, M. Moisenovich, S. Prokoshkin, and V. Brailovski, “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti–Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Part B 108, 647–662 (2020). https://​doi.​org/​10.​1002/​jbm.​b.​34419CrossRef
6.
Zurück zum Zitat A. Kudryashova, V. Sheremetyev, K. Lukashevich, V. Cheverikin, K. Inaekyan, S. Galkin, S. Prokoshkin, and V. Brailovski, “Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti–18Zr–14Nb alloy for orthopedic implants,” J. Alloys Compd. 843, 156066 (2020). https://doi.org/10.1016/j.jallcom.2020.156066CrossRef A. Kudryashova, V. Sheremetyev, K. Lukashevich, V. Cheverikin, K. Inaekyan, S. Galkin, S. Prokoshkin, and V. Brailovski, “Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti–18Zr–14Nb alloy for orthopedic implants,” J. Alloys Compd. 843, 156066 (2020). https://​doi.​org/​10.​1016/​j.​jallcom.​2020.​156066CrossRef
7.
Zurück zum Zitat K. E. Lukashevich, V. A. Sheremetyev, A. A. Kudryashova, M. A. Derkach, V. A. Andreev, S. P. Galkin, S. P. Prokoshkin, and V. Brailovski, “Effect of forging temperature on the structure, mechanical and functional properties of superelastic Ti–Zr–Nb bar stock for biomedical applications,” Lett. Mater. 12, 54–58 (2022). https://doi.org/10.22226/2410-3535-2022-1-54-58CrossRef K. E. Lukashevich, V. A. Sheremetyev, A. A. Kudryashova, M. A. Derkach, V. A. Andreev, S. P. Galkin, S. P. Prokoshkin, and V. Brailovski, “Effect of forging temperature on the structure, mechanical and functional properties of superelastic Ti–Zr–Nb bar stock for biomedical applications,” Lett. Mater. 12, 54–58 (2022). https://​doi.​org/​10.​22226/​2410-3535-2022-1-54-58CrossRef
9.
Zurück zum Zitat K. Lukashevich, V. Sheremetyev, A. Komissarov, V. Cheverikin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Effect of cooling and annealing conditions on the microstructure, mechanical and superelastic behavior of a rotary forged Ti–18Zr–15Nb (at %) bar stock for spinal implants,” J. Funct. Biomater. 13, 259 (2022). https://doi.org/10.3390/jfb13040259CrossRef K. Lukashevich, V. Sheremetyev, A. Komissarov, V. Cheverikin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Effect of cooling and annealing conditions on the microstructure, mechanical and superelastic behavior of a rotary forged Ti–18Zr–15Nb (at %) bar stock for spinal implants,” J. Funct. Biomater. 13, 259 (2022). https://​doi.​org/​10.​3390/​jfb13040259CrossRef
10.
Zurück zum Zitat V. Sheremetyev, K. Lukashevich, A. Kreitcberg, A. Kudryashova, M. Tsaturyants, S. Galkin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Optimization of a thermomechanical treatment of superelastic Ti–Zr–Nb alloys for the production of bar stock for orthopedic implants,” J. Alloys Compd. 928, 167143 (2022). https://doi.org/10.1016/j.jallcom.2022.167143CrossRef V. Sheremetyev, K. Lukashevich, A. Kreitcberg, A. Kudryashova, M. Tsaturyants, S. Galkin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Optimization of a thermomechanical treatment of superelastic Ti–Zr–Nb alloys for the production of bar stock for orthopedic implants,” J. Alloys Compd. 928, 167143 (2022). https://​doi.​org/​10.​1016/​j.​jallcom.​2022.​167143CrossRef
28.
Zurück zum Zitat K. Y. Xie, Ya. Wang, Yo. Zhao, L. Chang, G. Wang, Z. Chen, Ya. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, “Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications,” Mater. Sci. Eng., C 33, 3530–3536 (2013). https://doi.org/10.1016/j.msec.2013.04.044CrossRef K. Y. Xie, Ya. Wang, Yo. Zhao, L. Chang, G. Wang, Z. Chen, Ya. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, “Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications,” Mater. Sci. Eng., C 33, 3530–3536 (2013). https://​doi.​org/​10.​1016/​j.​msec.​2013.​04.​044CrossRef
32.
Zurück zum Zitat D. Gunderov, K. Kim, S. Gunderova, A. Churakova, Yu. Lebedev, R. Nafikov, M. Derkach, K. Lukashevich, V. Sheremetyev, and S. Prokoshkin, “Effect of high-pressure torsion and annealing on the structure, phase composition, and microhardness of the Ti–18Zr–15Nb (at %) alloy,” Materials 16, 1754 (2023). https://doi.org/10.3390/ma16041754CrossRef D. Gunderov, K. Kim, S. Gunderova, A. Churakova, Yu. Lebedev, R. Nafikov, M. Derkach, K. Lukashevich, V. Sheremetyev, and S. Prokoshkin, “Effect of high-pressure torsion and annealing on the structure, phase composition, and microhardness of the Ti–18Zr–15Nb (at %) alloy,” Materials 16, 1754 (2023). https://​doi.​org/​10.​3390/​ma16041754CrossRef
Metadaten
Titel
Study of Low-Temperature Thermomechanical Behavior of the Ti–18Zr–15Nb Superelastic Alloy under Different Temperature-Rate Conditions
verfasst von
M. A. Derkach
V. A. Sheremetyev
A. V. Korotitskiy
S. D. Prokoshkin
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 9/2023
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X23601300

Weitere Artikel der Ausgabe 9/2023

Physics of Metals and Metallography 9/2023 Zur Ausgabe