Skip to main content
Erschienen in: Wood Science and Technology 1/2024

06.12.2023 | Review

Birefringence of cellulose: review, measurement techniques, dispersion models, biomedical applications and future perspectives

verfasst von: Muhammad Noman Khan, Zain ul Abidin, Shamim Khan, Almas, Sonia Mustafa, Iftikhar Ahmad

Erschienen in: Wood Science and Technology | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose, the basic biopolymer of plants, has unique optical characteristics due to its inherent birefringence. In this review, we summarize reported birefringence values for cellulose from the literature and describe its measurement techniques, including ellipsometry, interferometry, spectrophotometry and photothermometry. We also discuss the main dispersion models that have been proposed to explain the wavelength dependence of cellulose birefringence. Furthermore, we outline the diverse applications of cellulose birefringence, with a particular focus on biomedicine. Finally, we discuss the future prospects for cellulose birefringence. Overall, this review provides valuable insights into the basic research and practical application of cellulose birefringence and will stimulate new research and innovation in various fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I et al (2017) Designing novel bioconjugates of hydroxyethyl cellulose and salicylates for potential pharmaceutical and pharmacological applications. Int J Biol Macromol 103:441–450PubMedCrossRef Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I et al (2017) Designing novel bioconjugates of hydroxyethyl cellulose and salicylates for potential pharmaceutical and pharmacological applications. Int J Biol Macromol 103:441–450PubMedCrossRef
Zurück zum Zitat Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, Deng M et al (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9(4):719–731PubMedCrossRef Aravamudhan A, Ramos DM, Nip J, Harmon MD, James R, Deng M et al (2013) Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. J Biomed Nanotechnol 9(4):719–731PubMedCrossRef
Zurück zum Zitat Atchison DA, Smith G (2005) Chromatic dispersions of the ocular media of human eyes. J Opt Soc Am A 22(1):29–37ADSCrossRef Atchison DA, Smith G (2005) Chromatic dispersions of the ocular media of human eyes. J Opt Soc Am A 22(1):29–37ADSCrossRef
Zurück zum Zitat Barkane A, Kampe E, Platnieks O, Gaidukovs S (2021) Cellulose nanocrystals vs. Cellulose nanofibers: a comparative study of reinforcing effects in uv-cured vegetable oil nanocomposites. Nanomaterials 11(7):1791 Barkane A, Kampe E, Platnieks O, Gaidukovs S (2021) Cellulose nanocrystals vs. Cellulose nanofibers: a comparative study of reinforcing effects in uv-cured vegetable oil nanocomposites. Nanomaterials 11(7):1791
Zurück zum Zitat Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20(3):1401–1411CrossRef Beck S, Bouchard J, Chauve G, Berry R (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20(3):1401–1411CrossRef
Zurück zum Zitat Bordel D, Putaux J-L, Heux L (2006) Orientation of native cellulose in an electric field. Langmuir 22(13):4899–4901PubMedCrossRef Bordel D, Putaux J-L, Heux L (2006) Orientation of native cellulose in an electric field. Langmuir 22(13):4899–4901PubMedCrossRef
Zurück zum Zitat Calí C, Mosca M, Targia G (1976) A simple apparatus for the determination of the optical constants and the thickness of absorbing thin films. J Phys E: Sci Instrum 9:1002–1004CrossRef Calí C, Mosca M, Targia G (1976) A simple apparatus for the determination of the optical constants and the thickness of absorbing thin films. J Phys E: Sci Instrum 9:1002–1004CrossRef
Zurück zum Zitat Choi WJ, Ryu SY, Kim JK, Kim JY, Kim DU, Chang KS (2013) Fast mapping of absorbing defects in optical materials by full-field photothermal reflectance microscopy. Opt Lett 38(22):4907–4910ADSPubMedCrossRef Choi WJ, Ryu SY, Kim JK, Kim JY, Kim DU, Chang KS (2013) Fast mapping of absorbing defects in optical materials by full-field photothermal reflectance microscopy. Opt Lett 38(22):4907–4910ADSPubMedCrossRef
Zurück zum Zitat Coffey PD, Swann MJ, Waigh TA, Mua Q, Lu JR (2013) The structure and mass of heterogeneous thin films measured with dual polarization interferometry and ellipsometry. RSC Adv 3:3316–3324ADSCrossRef Coffey PD, Swann MJ, Waigh TA, Mua Q, Lu JR (2013) The structure and mass of heterogeneous thin films measured with dual polarization interferometry and ellipsometry. RSC Adv 3:3316–3324ADSCrossRef
Zurück zum Zitat Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325(1–2):44–51CrossRef Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325(1–2):44–51CrossRef
Zurück zum Zitat Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8(1):1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8(1):1–12CrossRef
Zurück zum Zitat De La Cruz JA, Liu Q, Senyuk B, Frazier AW, Peddireddy K, Smalyukh II (2018) Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5(6):2468–2477CrossRef De La Cruz JA, Liu Q, Senyuk B, Frazier AW, Peddireddy K, Smalyukh II (2018) Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5(6):2468–2477CrossRef
Zurück zum Zitat de Olyveira GM, Filho LX, Basmaji P, Costa LMM (2011) Bacterial nanocellulose for medicine regenerative. J Nanotechnol Eng Med 2(3):034001CrossRef de Olyveira GM, Filho LX, Basmaji P, Costa LMM (2011) Bacterial nanocellulose for medicine regenerative. J Nanotechnol Eng Med 2(3):034001CrossRef
Zurück zum Zitat Ding H, Lu JQ, Wooden WA, Kragel PJ, Hu XH (2006) Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys Med Biol 51(6):1479–1489PubMedCrossRef Ding H, Lu JQ, Wooden WA, Kragel PJ, Hu XH (2006) Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys Med Biol 51(6):1479–1489PubMedCrossRef
Zurück zum Zitat Dong S, Roman M (2007) Florescently labelled cellulose nanocrystals for bioimaging. J Am Chem Soc 129:13810–13811PubMedCrossRef Dong S, Roman M (2007) Florescently labelled cellulose nanocrystals for bioimaging. J Am Chem Soc 129:13810–13811PubMedCrossRef
Zurück zum Zitat Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15(5):1560–1567CrossRef Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15(5):1560–1567CrossRef
Zurück zum Zitat Duan C, Cheng Z, Wang B, Zeng J, Xu J, Li J et al (2021) Chiral photonic liquid crystal films derived from cellulose nanocrystals. Nano Micro Small 17(30):2007306 Duan C, Cheng Z, Wang B, Zeng J, Xu J, Li J et al (2021) Chiral photonic liquid crystal films derived from cellulose nanocrystals. Nano Micro Small 17(30):2007306
Zurück zum Zitat Dumanli AG, Van Der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U et al (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6(15):12302–12306PubMedPubMedCentralCrossRef Dumanli AG, Van Der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U et al (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6(15):12302–12306PubMedPubMedCentralCrossRef
Zurück zum Zitat Dutton JJ (1991) Coralline hydroxyapatite as an ocular implant. Ophthalmology 98(3):370–377PubMedCrossRef Dutton JJ (1991) Coralline hydroxyapatite as an ocular implant. Ophthalmology 98(3):370–377PubMedCrossRef
Zurück zum Zitat El-Diasty F, Soliman MA, Elgendy AFT, Ashour A (2007) Birefringence dispersion in uniaxial material irradiated by gamma rays: cellulose triacetate films. J Opt a: Pure Appl Opt 9(3):247–252ADSCrossRef El-Diasty F, Soliman MA, Elgendy AFT, Ashour A (2007) Birefringence dispersion in uniaxial material irradiated by gamma rays: cellulose triacetate films. J Opt a: Pure Appl Opt 9(3):247–252ADSCrossRef
Zurück zum Zitat Erukhimovich I, de la Cruz MO (2004) Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions. J Polym Sci Part b Polym Phys 48:2029–2037 Erukhimovich I, de la Cruz MO (2004) Phase equilibria and charge fractionation in polydisperse polyelectrolyte solutions. J Polym Sci Part b Polym Phys 48:2029–2037
Zurück zum Zitat Espinha A, Guidetti G, Serrano MC, Frka-Petesic B, Dumanli AG, Hamad WY et al (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8(46):31935–31940PubMedPubMedCentralCrossRef Espinha A, Guidetti G, Serrano MC, Frka-Petesic B, Dumanli AG, Hamad WY et al (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8(46):31935–31940PubMedPubMedCentralCrossRef
Zurück zum Zitat Frka-Petesic B, Sugiyama J, Kimura S, Chanzy H, Maret G (2015) Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals. Macromolecules 48(24):8844–8857ADSCrossRef Frka-Petesic B, Sugiyama J, Kimura S, Chanzy H, Maret G (2015) Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals. Macromolecules 48(24):8844–8857ADSCrossRef
Zurück zum Zitat Gallais L, Commandré M (2006) Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces. Appl Opt 45(7):1416–1424ADSPubMedCrossRef Gallais L, Commandré M (2006) Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces. Appl Opt 45(7):1416–1424ADSPubMedCrossRef
Zurück zum Zitat Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S et al (2015) Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromol 16(4):1341–1351CrossRef Gonçalves S, Padrão J, Rodrigues IP, Silva JP, Sencadas V, Lanceros-Mendez S et al (2015) Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromol 16(4):1341–1351CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500PubMedCrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500PubMedCrossRef
Zurück zum Zitat Hamza AA, Sokkar TZN, Shahin MM (1985) Interferometric determination of the optical properties of fibres with irregular transverse sections (Ramie). J Microsc 137(1):85–92CrossRef Hamza AA, Sokkar TZN, Shahin MM (1985) Interferometric determination of the optical properties of fibres with irregular transverse sections (Ramie). J Microsc 137(1):85–92CrossRef
Zurück zum Zitat Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res Part A 106(5):1288–1298CrossRef Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y (2018) Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res Part A 106(5):1288–1298CrossRef
Zurück zum Zitat Iyer KRK, Neelakantan P, Radhakrishnan (1968) Birefringence of native cellulosic fibers. I. Untreated cotton and ramie. J Polym Sci Part A-2 Polym Phys 6(10):1747–1758 Iyer KRK, Neelakantan P, Radhakrishnan (1968) Birefringence of native cellulosic fibers. I. Untreated cotton and ramie. J Polym Sci Part A-2 Polym Phys 6(10):1747–1758
Zurück zum Zitat Jokerst JV, Van de Sompel D, Bohndiek SE, Gambhir SS (2014) Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2(3):119–127PubMedPubMedCentralCrossRef Jokerst JV, Van de Sompel D, Bohndiek SE, Gambhir SS (2014) Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics 2(3):119–127PubMedPubMedCentralCrossRef
Zurück zum Zitat Joo K-N, Kim S-W (2007) Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser. Opt Lett 32(6):647–649ADSPubMedCrossRef Joo K-N, Kim S-W (2007) Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser. Opt Lett 32(6):647–649ADSPubMedCrossRef
Zurück zum Zitat Kim DH, Song YS (2015) Anisotropic optical film embedded with cellulose nanowhisker. Carbohyd Polym 130:448–454CrossRef Kim DH, Song YS (2015) Anisotropic optical film embedded with cellulose nanowhisker. Carbohyd Polym 130:448–454CrossRef
Zurück zum Zitat Kim DH, Song CG, Ilev IK, Kang JU (2011) Axial-scanning low-coherence interferometer method for noncontact thickness measurement of biological samples. Appl Opt 50(6):970–974ADSPubMedCrossRef Kim DH, Song CG, Ilev IK, Kang JU (2011) Axial-scanning low-coherence interferometer method for noncontact thickness measurement of biological samples. Appl Opt 50(6):970–974ADSPubMedCrossRef
Zurück zum Zitat Kim J-A, Kang C-S, Eom TB, Jin J, Suh HS, Kim JW (2014) Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique. Appl Opt 53(20):4604–4610ADSPubMedCrossRef Kim J-A, Kang C-S, Eom TB, Jin J, Suh HS, Kim JW (2014) Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique. Appl Opt 53(20):4604–4610ADSPubMedCrossRef
Zurück zum Zitat Kim JA, Kim JW, Kang CS, Jin J, Lee JY (2017) An interferometric system for measuring thickness of parallel glass plates without 2π ambiguity using phase analysis of quadrature Haidinger fringes. Rev Sci Instrum 88(5):055108ADSPubMedCrossRef Kim JA, Kim JW, Kang CS, Jin J, Lee JY (2017) An interferometric system for measuring thickness of parallel glass plates without 2π ambiguity using phase analysis of quadrature Haidinger fringes. Rev Sci Instrum 88(5):055108ADSPubMedCrossRef
Zurück zum Zitat Kim YM, Lee YS, Kim T, Yang K, Nam K, Choe D et al. (2020) Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydrate Polym 247(June 2020):116684 Kim YM, Lee YS, Kim T, Yang K, Nam K, Choe D et al. (2020) Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydrate Polym 247(June 2020):116684
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Prog Polym Sci (Oxford) 26(9):1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose - Artificial blood vessels for microsurgery. Prog Polym Sci (Oxford) 26(9):1561–1603CrossRef
Zurück zum Zitat Künzner N, Diener J, Gross E, Kovalev D, Timoshenko VY, Fujii M (2005) Form birefringence of anisotropically nanostructured silicon. Phys Rev B 71:195304ADSCrossRef Künzner N, Diener J, Gross E, Kovalev D, Timoshenko VY, Fujii M (2005) Form birefringence of anisotropically nanostructured silicon. Phys Rev B 71:195304ADSCrossRef
Zurück zum Zitat Li C, Wang N, Guo T, Evans J, He S (2019) Preparation of optical waveplates from cellulose nanocrystal nematics on patterned polydimethylsiloxane substrates. Opt Mater Exp 9(12):4614ADSCrossRef Li C, Wang N, Guo T, Evans J, He S (2019) Preparation of optical waveplates from cellulose nanocrystal nematics on patterned polydimethylsiloxane substrates. Opt Mater Exp 9(12):4614ADSCrossRef
Zurück zum Zitat Liang H, He L, Zhou B, Li B, Li J (2017) Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery. Colloids Surf B 156:19–28ADSCrossRef Liang H, He L, Zhou B, Li B, Li J (2017) Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery. Colloids Surf B 156:19–28ADSCrossRef
Zurück zum Zitat Ličen M, Majaron B, Noh J, Schütz C, Bergström L, Lagerwall J et al (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23(6):3601–3609CrossRef Ličen M, Majaron B, Noh J, Schütz C, Bergström L, Lagerwall J et al (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23(6):3601–3609CrossRef
Zurück zum Zitat Likhachev DV (2014) A practical method for optical dispersion model selection and parameters variations in scatterometry analysis with variable n&k’s. Thin Solid Films 562:90–98ADSCrossRef Likhachev DV (2014) A practical method for optical dispersion model selection and parameters variations in scatterometry analysis with variable n&k’s. Thin Solid Films 562:90–98ADSCrossRef
Zurück zum Zitat Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals. Adv Mater 26(42):7178–7184PubMedCrossRef Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Orientationally Ordered Colloidal Co-Dispersions of Gold Nanorods and Cellulose Nanocrystals. Adv Mater 26(42):7178–7184PubMedCrossRef
Zurück zum Zitat Liu JC, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci 132(22):41970CrossRef Liu JC, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci 132(22):41970CrossRef
Zurück zum Zitat Lu T, Pan H, Ma J, Li Y, Bokhari SW, Jiang X et al (2017) Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Appl Mater Interfaces 9(21):18231–18237PubMedCrossRef Lu T, Pan H, Ma J, Li Y, Bokhari SW, Jiang X et al (2017) Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Appl Mater Interfaces 9(21):18231–18237PubMedCrossRef
Zurück zum Zitat Maniscalco B, Kaminski PM, Walls JM (2014) Thin film thickness measurements using Scanning White Light Interferometry. Thin Solid Films 550:10–16ADSCrossRef Maniscalco B, Kaminski PM, Walls JM (2014) Thin film thickness measurements using Scanning White Light Interferometry. Thin Solid Films 550:10–16ADSCrossRef
Zurück zum Zitat Martienssen W (1957) Über Die Excitonenbanden Der Alkalihalogenidkristalle. J Phys Chem Solids 2(4):257–267ADSCrossRef Martienssen W (1957) Über Die Excitonenbanden Der Alkalihalogenidkristalle. J Phys Chem Solids 2(4):257–267ADSCrossRef
Zurück zum Zitat Martienssen W (1959) The optical absorption edge in ionic crystals. J Phys Chem Solids 8:294–296ADSCrossRef Martienssen W (1959) The optical absorption edge in ionic crystals. J Phys Chem Solids 8:294–296ADSCrossRef
Zurück zum Zitat Mendoza-Galván A, Li Y, Yang X, Magnusson R, Järrendahl K, Berglund L et al (2020) Transmission Mueller-matrix characterization of transparent ramie films. J Vac Sci Technol, B 38(1):014008CrossRef Mendoza-Galván A, Li Y, Yang X, Magnusson R, Järrendahl K, Berglund L et al (2020) Transmission Mueller-matrix characterization of transparent ramie films. J Vac Sci Technol, B 38(1):014008CrossRef
Zurück zum Zitat Mendoza-Galván A, Tejeda-Galán T, Domínguez-Gómez AB, Mauricio-Sánchez RA, Järrendahl K, Arwin H (2019) Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9:45CrossRef Mendoza-Galván A, Tejeda-Galán T, Domínguez-Gómez AB, Mauricio-Sánchez RA, Järrendahl K, Arwin H (2019) Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9:45CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef
Zurück zum Zitat Mujica R, Augustine A, Pauly M, Le Houerou V, Decher G, Battie Y et al (2023) Macroscopic mapping of the linear in-plane anisotropy of nanocellulosic thin films by Mueller matrix polarimetry. Compos Sci Technol 233:109889CrossRef Mujica R, Augustine A, Pauly M, Le Houerou V, Decher G, Battie Y et al (2023) Macroscopic mapping of the linear in-plane anisotropy of nanocellulosic thin films by Mueller matrix polarimetry. Compos Sci Technol 233:109889CrossRef
Zurück zum Zitat Na J, Choi HY, Choi ES, Lee C, Lee BH (2009) Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index. Appl Opt 48(13):2461–2467ADSPubMedCrossRef Na J, Choi HY, Choi ES, Lee C, Lee BH (2009) Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index. Appl Opt 48(13):2461–2467ADSPubMedCrossRef
Zurück zum Zitat Natoli JY, Gallais L, Akhouayri H, Amra C (2002) Laser-induced damage of materials in bulk, thin films and liquid forms. Appl Opt 41(16):3156–3166ADSPubMedCrossRef Natoli JY, Gallais L, Akhouayri H, Amra C (2002) Laser-induced damage of materials in bulk, thin films and liquid forms. Appl Opt 41(16):3156–3166ADSPubMedCrossRef
Zurück zum Zitat Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21PubMedCrossRef Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21PubMedCrossRef
Zurück zum Zitat Niskanen I, Heikkinen J, Mikkonen J, Harju A, Heräjärvi H, Venäläinen M et al (2012) Detection of the effective refractive index of thermally modified Scots pine by immersion liquid method. J Wood Sci 58(1):46–50CrossRef Niskanen I, Heikkinen J, Mikkonen J, Harju A, Heräjärvi H, Venäläinen M et al (2012) Detection of the effective refractive index of thermally modified Scots pine by immersion liquid method. J Wood Sci 58(1):46–50CrossRef
Zurück zum Zitat Niskanen I, Zhang K, Karzarjeddi M, Liimatainen H, Shibata S, Hagen N et al (2022) Optical properties of cellulose nanofibre films at high temperatures. J Polym Res 29(5):187CrossRef Niskanen I, Zhang K, Karzarjeddi M, Liimatainen H, Shibata S, Hagen N et al (2022) Optical properties of cellulose nanofibre films at high temperatures. J Polym Res 29(5):187CrossRef
Zurück zum Zitat Nobukawa S (2019) Design of birefringence and its wavelength dispersion for cellulose derivatives using substitution, low-mass additives, and porous structures. Polym J 51(9):835–843CrossRef Nobukawa S (2019) Design of birefringence and its wavelength dispersion for cellulose derivatives using substitution, low-mass additives, and porous structures. Polym J 51(9):835–843CrossRef
Zurück zum Zitat Orelma H, Filpponen I, Johansson LS, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61PubMedCrossRef Orelma H, Filpponen I, Johansson LS, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61PubMedCrossRef
Zurück zum Zitat Osaki K, Inoue T, Hwang EJ, Okamoto H, Takiguchi O (1994) Dynamic birefringence of amorphous polymers. J Non Cryst Solids 172–174:838–849ADSCrossRef Osaki K, Inoue T, Hwang EJ, Okamoto H, Takiguchi O (1994) Dynamic birefringence of amorphous polymers. J Non Cryst Solids 172–174:838–849ADSCrossRef
Zurück zum Zitat Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858ADSCrossRef Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858ADSCrossRef
Zurück zum Zitat Park J, Kim JA, Ahn H, Bae J, Jin J (2019) A review of thickness measurements of thick transparent layers using optical interferometry. Int J Precis Eng Manuf 20(3):463–477CrossRef Park J, Kim JA, Ahn H, Bae J, Jin J (2019) A review of thickness measurements of thick transparent layers using optical interferometry. Int J Precis Eng Manuf 20(3):463–477CrossRef
Zurück zum Zitat Penabad-Peña L, Herrera-Morales J, Betancourt M, Nicolau E (2019) Cellulose acetate/P4VP- b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 4(27):22456–22463PubMedPubMedCentralCrossRef Penabad-Peña L, Herrera-Morales J, Betancourt M, Nicolau E (2019) Cellulose acetate/P4VP- b-PEO membranes for the adsorption of electron-deficient pharmaceutical compounds. ACS Omega 4(27):22456–22463PubMedPubMedCentralCrossRef
Zurück zum Zitat Peng SX, Moon RJ, Youngblood JP (2014) Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners. Green Mater 2(4):193–205CrossRef Peng SX, Moon RJ, Youngblood JP (2014) Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners. Green Mater 2(4):193–205CrossRef
Zurück zum Zitat Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF et al (2017) Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 104:97–106PubMedCrossRef Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF et al (2017) Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 104:97–106PubMedCrossRef
Zurück zum Zitat Piegari A, Masetti E (1985) Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 124(3–4):249–257ADSCrossRef Piegari A, Masetti E (1985) Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 124(3–4):249–257ADSCrossRef
Zurück zum Zitat Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G et al (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385PubMedCrossRef Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G et al (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385PubMedCrossRef
Zurück zum Zitat Raicopol MD, Andronescu C, Voicu SI, Vasile E, Pandele AM (2019) Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohyd Polym 214:204–212CrossRef Raicopol MD, Andronescu C, Voicu SI, Vasile E, Pandele AM (2019) Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants. Carbohyd Polym 214:204–212CrossRef
Zurück zum Zitat Reimer M, Zollfrank C (2021) Cellulose for light manipulation: methods, applications, and prospects. Adv Energy Mater 11(43):2003866CrossRef Reimer M, Zollfrank C (2021) Cellulose for light manipulation: methods, applications, and prospects. Adv Energy Mater 11(43):2003866CrossRef
Zurück zum Zitat Saha P, Davis VA (2018) Photonic properties and applications of cellulose nanocrystal films with planar anchoring. ACS Appl Nano Mater 1(5):2175–2183CrossRef Saha P, Davis VA (2018) Photonic properties and applications of cellulose nanocrystal films with planar anchoring. ACS Appl Nano Mater 1(5):2175–2183CrossRef
Zurück zum Zitat Service RF (2003) Electronic textiles charge ahead. Science 301(5635):909–911 Service RF (2003) Electronic textiles charge ahead. Science 301(5635):909–911
Zurück zum Zitat Shkyliuk I, Makowski T, Piorkowska E (2023) Uniaxial orientation of cellulose nanocrystals by zone-casting technique. Cellulose 30:10117–10124CrossRef Shkyliuk I, Makowski T, Piorkowska E (2023) Uniaxial orientation of cellulose nanocrystals by zone-casting technique. Cellulose 30:10117–10124CrossRef
Zurück zum Zitat Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–426ADSPubMedCrossRef Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–426ADSPubMedCrossRef
Zurück zum Zitat Smalley DE, Nygaard E, Squire K, Van Wagoner J, Rasmussen J, Gneiting S et al (2018) A photophoretic-trap volumetric display. Nature 553(7689):486–490ADSPubMedCrossRef Smalley DE, Nygaard E, Squire K, Van Wagoner J, Rasmussen J, Gneiting S et al (2018) A photophoretic-trap volumetric display. Nature 553(7689):486–490ADSPubMedCrossRef
Zurück zum Zitat Sokkar TZN, Shahin MM (1985) Optical anisotropy in ramie fibers. Text Res J 55(3):139–142CrossRef Sokkar TZN, Shahin MM (1985) Optical anisotropy in ramie fibers. Text Res J 55(3):139–142CrossRef
Zurück zum Zitat Tang L, Lin F, Li T, Cai Z, Hong B, Huang B (2018) Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 25(8):4525–4536CrossRef Tang L, Lin F, Li T, Cai Z, Hong B, Huang B (2018) Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose 25(8):4525–4536CrossRef
Zurück zum Zitat Tang Y, Petropoulos K, Kurth F, Gao H, Migliorelli D, Guenat O et al (2020) Screen-printed glucose sensors modified with cellulose nanocrystals (CNCs) for cell culture monitoring. Biosensors 10:125PubMedPubMedCentralCrossRef Tang Y, Petropoulos K, Kurth F, Gao H, Migliorelli D, Guenat O et al (2020) Screen-printed glucose sensors modified with cellulose nanocrystals (CNCs) for cell culture monitoring. Biosensors 10:125PubMedPubMedCentralCrossRef
Zurück zum Zitat Torgbo S, Sukyai P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 11:34–49CrossRef Torgbo S, Sukyai P (2018) Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl Mater Today 11:34–49CrossRef
Zurück zum Zitat Torkashvand N, Sarlak N (2019) Fabrication of a dual T1 and T2 contrast agent for magnetic resonance imaging using cellulose nanocrystals/Fe3O4 nanocomposite. Eur Polym J 118:128–136CrossRef Torkashvand N, Sarlak N (2019) Fabrication of a dual T1 and T2 contrast agent for magnetic resonance imaging using cellulose nanocrystals/Fe3O4 nanocomposite. Eur Polym J 118:128–136CrossRef
Zurück zum Zitat Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314CrossRef Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23(4):2291–2314CrossRef
Zurück zum Zitat Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of Solids. Phys Rev 92(5):1324ADSCrossRef Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of Solids. Phys Rev 92(5):1324ADSCrossRef
Zurück zum Zitat Wan W, Ouyang H, Long W, Yan W, He M, Huang H et al (2019) Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery. ACS Sustain Chem Eng 7(23):19202–19212CrossRef Wan W, Ouyang H, Long W, Yan W, He M, Huang H et al (2019) Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery. ACS Sustain Chem Eng 7(23):19202–19212CrossRef
Zurück zum Zitat Wu Z, Thomsen M, Kuo P-K, Lu Y, Stolz CJ, Kozlowski MR (1997) Photothermal characterization of optical thin film coatings. Opt Eng 36(1):251–262ADSCrossRef Wu Z, Thomsen M, Kuo P-K, Lu Y, Stolz CJ, Kozlowski MR (1997) Photothermal characterization of optical thin film coatings. Opt Eng 36(1):251–262ADSCrossRef
Zurück zum Zitat Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009 Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009
Zurück zum Zitat Yang W, Zheng Y, Chen J, Zhu Q, Feng L, Lan Y et al (2019) Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. Mater Sci Eng C 99:1362–1373CrossRef Yang W, Zheng Y, Chen J, Zhu Q, Feng L, Lan Y et al (2019) Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. Mater Sci Eng C 99:1362–1373CrossRef
Zurück zum Zitat Yusefi M, Shameli K (2021) Nanocellulose as a vehicle for drug delivery and efficiency of anticancer activity: a short-review. J Res Nanosci Nanotechnol 1(1):30–43CrossRef Yusefi M, Shameli K (2021) Nanocellulose as a vehicle for drug delivery and efficiency of anticancer activity: a short-review. J Res Nanosci Nanotechnol 1(1):30–43CrossRef
Zurück zum Zitat Yusefi M, Soon MLK, Teow SY, Monchouguy EI, Neerooa BNHM, Izadiyan Z et al (2022) Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. Int J Biol Macromol 199:372–385PubMedCrossRef Yusefi M, Soon MLK, Teow SY, Monchouguy EI, Neerooa BNHM, Izadiyan Z et al (2022) Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. Int J Biol Macromol 199:372–385PubMedCrossRef
Zurück zum Zitat Zhanga YP, Chodavarapua VP, Kirka AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuat B Chem 176:692–697CrossRef Zhanga YP, Chodavarapua VP, Kirka AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuat B Chem 176:692–697CrossRef
Zurück zum Zitat Zhao Y, Schmidt G, Moore DT, Ellis JD (2015) Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer. Appl Opt 54(25):7693–7700ADSPubMedCrossRef Zhao Y, Schmidt G, Moore DT, Ellis JD (2015) Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer. Appl Opt 54(25):7693–7700ADSPubMedCrossRef
Metadaten
Titel
Birefringence of cellulose: review, measurement techniques, dispersion models, biomedical applications and future perspectives
verfasst von
Muhammad Noman Khan
Zain ul Abidin
Shamim Khan
Almas
Sonia Mustafa
Iftikhar Ahmad
Publikationsdatum
06.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Wood Science and Technology / Ausgabe 1/2024
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-023-01512-3

Weitere Artikel der Ausgabe 1/2024

Wood Science and Technology 1/2024 Zur Ausgabe