Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Biomedical Applications of Nanomaterials

verfasst von : Alexander L. Yarin, Filippo Pierini, Eyal Zussman, Marco Lauricella

Erschienen in: Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents an overview of the biomedical applications of electrospun nanofibers. Due to the impact of novel technological advancements on nanoplatform fabrication, this well-explored topic is still one of the most dynamic and exciting biomedically-oriented scientific fields. The entire chapter comprises three sections dealing with different applications of nanofibers linked by a shared element, which is the vital role of the nanostructure for the functional properties of the fibrous biomaterials under discussion. The first section introduces the key contribution of electrospun nanomaterials in developing injectable biomaterials for targeted nanomedicine. The second section reviews the interaction between fibrous hemostatic agents fabricated via electrospinning and blood, starting from basic principles to the final clinical applications. The last section is entirely focused on one of the most timely topics, such as the fabrication of innovative face masks. The evolution of face mask development is discussed in order to pave the way for providing an overview of the most challenging aspect of the fabrication of the next generation of face masks characterized by multifunctionality and the possibility to activate them on demand.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdul Hameed, M. M., Padusha Mohamed Khan, S. A., Thamer, B. M., Rajkumar, N., El-Hamshary, H., El-Newehy, M. (2023). Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polymers for Advanced Technologies, 34, 6–23. https://doi.org/10.1002/pat.5884 Abdul Hameed, M. M., Padusha Mohamed Khan, S. A., Thamer, B. M., Rajkumar, N., El-Hamshary, H., El-Newehy, M. (2023). Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polymers for Advanced Technologies, 34, 6–23. https://​doi.​org/​10.​1002/​pat.​5884
Zurück zum Zitat Ahmed, F., Dutta, N. K., Zannettino, A., Vandyke, K., & Choudhury, N. R. (2014). Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules, 15, 1276–1287. https://doi.org/10.1021/bm401825cCrossRef Ahmed, F., Dutta, N. K., Zannettino, A., Vandyke, K., & Choudhury, N. R. (2014). Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications. Biomacromolecules, 15, 1276–1287. https://​doi.​org/​10.​1021/​bm401825cCrossRef
Zurück zum Zitat Boer, G., Johann, R., Rohner, J., Merenda, F., Delacrétaz, G., Renaud, P. H., & Salathé, R.-P. (2007). Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Review of Scientific Instruments, 78, 116101. https://doi.org/10.1063/1.2804768CrossRef Boer, G., Johann, R., Rohner, J., Merenda, F., Delacrétaz, G., Renaud, P. H., & Salathé, R.-P. (2007). Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip. Review of Scientific Instruments, 78, 116101. https://​doi.​org/​10.​1063/​1.​2804768CrossRef
Zurück zum Zitat Braune, S., Von Ruesten-Lange, M., Mrowietz, C., Lützow, K., Roch, T., Neffe, A. T., Lendlein, A., & Jung, F. (2013). Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol). Clinical Hemorheology and Microcirculation, 54, 235–248. https://doi.org/10.3233/CH-131729CrossRef Braune, S., Von Ruesten-Lange, M., Mrowietz, C., Lützow, K., Roch, T., Neffe, A. T., Lendlein, A., & Jung, F. (2013). Dynamic in vitro hemocompatibility testing of poly(ether imide) membranes functionalized with linear, methylated oligoglycerol and oligo(ethylene glycol). Clinical Hemorheology and Microcirculation, 54, 235–248. https://​doi.​org/​10.​3233/​CH-131729CrossRef
Zurück zum Zitat Braune, S., Zhou, S., Groth, B., & Jung, F. (2015). Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment. Clinical Hemorheology and Microcirculation, 61, 225–236. https://doi.org/10.3233/CH-151995 Braune, S., Zhou, S., Groth, B., & Jung, F. (2015). Quantification of adherent platelets on polymer-based biomaterials. Comparison of colorimetric and microscopic assessment. Clinical Hemorheology and Microcirculation, 61, 225–236. https://​doi.​org/​10.​3233/​CH-151995
Zurück zum Zitat Bresler, S. E., & Frenkel, Y. I. (1939). The character of thermal motion of long organic chains with reference to the elastic properties of rubber. Journal of Experimental and Theoretical Physics, 9, 1094–1106. Bresler, S. E., & Frenkel, Y. I. (1939). The character of thermal motion of long organic chains with reference to the elastic properties of rubber. Journal of Experimental and Theoretical Physics, 9, 1094–1106.
Zurück zum Zitat De Sio, L., Ding, B., Focsan, M., Kogermann, K., Pascoal-Faria, P., Petronela, F., Mitchell, G., Zussman, E., & Pierini, G. (2021). Personalized reusable face masks with smart nano-assisted destruction of pathogens for COVID-19: A visionary road. Chemistry: A European Journal, 27, 6112–6130. https://doi.org/10.1002/chem.202004875CrossRef De Sio, L., Ding, B., Focsan, M., Kogermann, K., Pascoal-Faria, P., Petronela, F., Mitchell, G., Zussman, E., & Pierini, G. (2021). Personalized reusable face masks with smart nano-assisted destruction of pathogens for COVID-19: A visionary road. Chemistry: A European Journal, 27, 6112–6130. https://​doi.​org/​10.​1002/​chem.​202004875CrossRef
Zurück zum Zitat Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Baghbadorani, M. A., Navid, S., Ebrahimpour, K., Khodabakhshi, D., Ghahremani, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Scientific Reports, 10, 3063. https://doi.org/10.1038/s41598-020-59931-2 Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Baghbadorani, M. A., Navid, S., Ebrahimpour, K., Khodabakhshi, D., Ghahremani, F. (2020). A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Scientific Reports, 10, 3063. https://​doi.​org/​10.​1038/​s41598-020-59931-2
Zurück zum Zitat Haghighat Bayan, M. A., Dias, Y. J., Rinoldi, C., Nakielski, P., Rybak, D., Truong, Y. B., Yarin, A. L., & Pierini, F. (2023). Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications. Journal of Polymer Science, 61, 521–533. https://doi.org/10.1002/pol.20220747 Haghighat Bayan, M. A., Dias, Y. J., Rinoldi, C., Nakielski, P., Rybak, D., Truong, Y. B., Yarin, A. L., & Pierini, F. (2023). Near-infrared light activated core-shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on-demand smart drug delivery applications. Journal of Polymer Science, 61, 521–533. https://​doi.​org/​10.​1002/​pol.​20220747
Zurück zum Zitat Howard, J., Huang, A., Li, Z., Tufekci, Z., Zdimal, V., van der Westhuizen, H.-M., von Delft, A., Price, A., Fridman, L., Tang, L.-H., Tang, V., Watson, G. L., Bax, C. E., Shaikh, R., Questier, F., Hernandez, D., Chu, L. F., Ramirez, C. M., & Rimoin, A. W. (2021). An evidence review of face masks against COVID-19. PNAS, 118, e2014564118. https://doi.org/10.1073/pnas.2014564118CrossRef Howard, J., Huang, A., Li, Z., Tufekci, Z., Zdimal, V., van der Westhuizen, H.-M., von Delft, A., Price, A., Fridman, L., Tang, L.-H., Tang, V., Watson, G. L., Bax, C. E., Shaikh, R., Questier, F., Hernandez, D., Chu, L. F., Ramirez, C. M., & Rimoin, A. W. (2021). An evidence review of face masks against COVID-19. PNAS, 118, e2014564118. https://​doi.​org/​10.​1073/​pnas.​2014564118CrossRef
Zurück zum Zitat Ji, X., Yang, W., Wang, T., Mao, C., Guo, L., Xiao, J., & He, N. (2013). Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. Journal of Biomedical Nanotechnology, 9, 1672–1678. https://doi.org/10.1166/jbn.2013.1665CrossRef Ji, X., Yang, W., Wang, T., Mao, C., Guo, L., Xiao, J., & He, N. (2013). Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. Journal of Biomedical Nanotechnology, 9, 1672–1678. https://​doi.​org/​10.​1166/​jbn.​2013.​1665CrossRef
Zurück zum Zitat Karahaliloǧlu, Z., Demirbilek, M., Ulusoy, I., Gümüşkaya, B., Baki Denkbaş, E. (2016). Hemostatic activities of nano/microporous bilayer dressings in a femoral artery bleeding rat model. Journal of Applied Polymer Science, 133, 43657. https://doi.org/10.1002/app.43657 Karahaliloǧlu, Z., Demirbilek, M., Ulusoy, I., Gümüşkaya, B., Baki Denkbaş, E. (2016). Hemostatic activities of nano/microporous bilayer dressings in a femoral artery bleeding rat model. Journal of Applied Polymer Science, 133, 43657. https://​doi.​org/​10.​1002/​app.​43657
Zurück zum Zitat Lamichhane, S., Anderson, J. A., Remund, T., Sun, H., Larson, M. K., Kelly, P., & Mani, G. (2016). Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. Journal of Biomedical Materials Research—Part A, 104, 2291–2304. https://doi.org/10.1002/jbm.a.35763CrossRef Lamichhane, S., Anderson, J. A., Remund, T., Sun, H., Larson, M. K., Kelly, P., & Mani, G. (2016). Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. Journal of Biomedical Materials Research—Part A, 104, 2291–2304. https://​doi.​org/​10.​1002/​jbm.​a.​35763CrossRef
Zurück zum Zitat Langille, M. R., Personick, M. L., & Mirkin, C. A. (2013). Plasmon-mediated syntheses of metallic nanostructures. Angewandte Chemie International Edition, 52, 13910–13940.CrossRef Langille, M. R., Personick, M. L., & Mirkin, C. A. (2013). Plasmon-mediated syntheses of metallic nanostructures. Angewandte Chemie International Edition, 52, 13910–13940.CrossRef
Zurück zum Zitat Leong, M. F., Chian, K. S., Mhaisalkar, P. S., Ong, W. F., & Ratner, B. D. (2009). Effect of electrospun poly(D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. Journal of Biomedical Materials Research—Part A, 89, 1040–1048. https://doi.org/10.1002/jbm.a.32061CrossRef Leong, M. F., Chian, K. S., Mhaisalkar, P. S., Ong, W. F., & Ratner, B. D. (2009). Effect of electrospun poly(D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. Journal of Biomedical Materials Research—Part A, 89, 1040–1048. https://​doi.​org/​10.​1002/​jbm.​a.​32061CrossRef
Zurück zum Zitat Li, D., Nie, W., Chen, L., Miao, Y., Zhang, X., Chen, F., Yu, B. B., Ao, R., Yu, B. B., & He, C. (2017). Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 7, 7973–7982. https://doi.org/10.1039/C6RA27319JCrossRef Li, D., Nie, W., Chen, L., Miao, Y., Zhang, X., Chen, F., Yu, B. B., Ao, R., Yu, B. B., & He, C. (2017). Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 7, 7973–7982. https://​doi.​org/​10.​1039/​C6RA27319JCrossRef
Zurück zum Zitat Matuschek, C., Moll, F., Fangerau, H., Fischer, J. C., Zänker, K., van Griensven, M., Schneider, M., Kindgen-Milles, D., Knoefel, W. T., Lichtenberg, A., Tamaskovics, B., Djiepmo-Njanang, F. J., Budach, W., Corradini, S., Häussinger, D., Feldt, T., Jensen, B., Pelka, R., Orth, K., … Haussmann, J. (2020). The history and value of face masks. European Journal of Medical Research, 25, 23. https://doi.org/10.1186/s40001-020-00423-4CrossRef Matuschek, C., Moll, F., Fangerau, H., Fischer, J. C., Zänker, K., van Griensven, M., Schneider, M., Kindgen-Milles, D., Knoefel, W. T., Lichtenberg, A., Tamaskovics, B., Djiepmo-Njanang, F. J., Budach, W., Corradini, S., Häussinger, D., Feldt, T., Jensen, B., Pelka, R., Orth, K., … Haussmann, J. (2020). The history and value of face masks. European Journal of Medical Research, 25, 23. https://​doi.​org/​10.​1186/​s40001-020-00423-4CrossRef
Zurück zum Zitat Merkle, V. M., Martin, D., Hutchinson, M., Tran, P. L., Behrens, A., Hossainy, S., Sheriff, J., Bluestein, D., Wu, X., & Slepian, M. J. (2015). Hemocompatibility of poly(vinyl alcohol)-gelatin core-shell electrospun nanofibers: A scaffold for modulating platelet deposition and activation. ACS Applied Materials & Interfaces, 7, 8302–8312. https://doi.org/10.1021/acsami.5b01671CrossRef Merkle, V. M., Martin, D., Hutchinson, M., Tran, P. L., Behrens, A., Hossainy, S., Sheriff, J., Bluestein, D., Wu, X., & Slepian, M. J. (2015). Hemocompatibility of poly(vinyl alcohol)-gelatin core-shell electrospun nanofibers: A scaffold for modulating platelet deposition and activation. ACS Applied Materials & Interfaces, 7, 8302–8312. https://​doi.​org/​10.​1021/​acsami.​5b01671CrossRef
Zurück zum Zitat Nakielski, P., Rinoldi, C., Pruchniewski, M., Pawłowska, S., Gazińska, M., Strojny, B., Rybak, D., Jezierska-Woźniak, K., Urbanek, O., Denis, P., Sinderewicz, E., Czelejewska, W., Staszkiewicz-Chodor, J., Grodzik, M., Ziai, Y., Barczewska, M., Maksymowicz, W., & Pierini, F. (2022). Laser-assisted fabrication of injectable nanofibrous cell carriers. Small (weinheim an Der Bergstrasse, Germany), 18, 2104971. https://doi.org/10.1002/smll.202104971CrossRef Nakielski, P., Rinoldi, C., Pruchniewski, M., Pawłowska, S., Gazińska, M., Strojny, B., Rybak, D., Jezierska-Woźniak, K., Urbanek, O., Denis, P., Sinderewicz, E., Czelejewska, W., Staszkiewicz-Chodor, J., Grodzik, M., Ziai, Y., Barczewska, M., Maksymowicz, W., & Pierini, F. (2022). Laser-assisted fabrication of injectable nanofibrous cell carriers. Small (weinheim an Der Bergstrasse, Germany), 18, 2104971. https://​doi.​org/​10.​1002/​smll.​202104971CrossRef
Zurück zum Zitat Nowacki, M., Jundziłł, A., Bieniek, M., Kowalczyk, T., Kloskowski, T., & Drewa, T. (2012). Modern biomaterials as a haemostatic dressings in kidney—nephron sparing surgery (NSS)—murine model. A preliminary report. Polymers in Medicine, 42(1), 35–43. Nowacki, M., Jundziłł, A., Bieniek, M., Kowalczyk, T., Kloskowski, T., & Drewa, T. (2012). Modern biomaterials as a haemostatic dressings in kidney—nephron sparing surgery (NSS)—murine model. A preliminary report. Polymers in Medicine, 42(1), 35–43.
Zurück zum Zitat Pawłowska, S., Nakielski, P., Pierini, F., Piechocka, I. K., Zembrzycki, K., & Kowalewski, T. A. (2017). Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLoS ONE, 12, e0187815-e187821.CrossRef Pawłowska, S., Nakielski, P., Pierini, F., Piechocka, I. K., Zembrzycki, K., & Kowalewski, T. A. (2017). Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLoS ONE, 12, e0187815-e187821.CrossRef
Zurück zum Zitat Pawłowska, S., Rinoldi, C., Nakielski, P., Ziai, Y., Urbanek, O., Li, X., Kowalewski, T. A., Ding, B., & Pierini, F. (2020). Ultraviolet light-assisted electrospinning of core-shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation. Advanced Materials Interfaces, 7, 2000247. https://doi.org/10.1002/admi.202000247CrossRef Pawłowska, S., Rinoldi, C., Nakielski, P., Ziai, Y., Urbanek, O., Li, X., Kowalewski, T. A., Ding, B., & Pierini, F. (2020). Ultraviolet light-assisted electrospinning of core-shell fully cross-linked P(NIPAAm-co-NIPMAAm) hydrogel-based nanofibers for thermally induced drug delivery self-regulation. Advanced Materials Interfaces, 7, 2000247. https://​doi.​org/​10.​1002/​admi.​202000247CrossRef
Zurück zum Zitat Pierini, F., Nakielski, P., Urbanek, O., Pawłowska, S., Lanzi, M., De Sio, L., & Kowalewski, T. A. (2018). Polymer-based nanomaterials for photothermal therapy: From light-responsive to multifunctional nanoplatforms for synergistically combined technologies. Biomacromolecules, 19, 4147–4167. https://doi.org/10.1021/acs.biomac.8b01138CrossRef Pierini, F., Nakielski, P., Urbanek, O., Pawłowska, S., Lanzi, M., De Sio, L., & Kowalewski, T. A. (2018). Polymer-based nanomaterials for photothermal therapy: From light-responsive to multifunctional nanoplatforms for synergistically combined technologies. Biomacromolecules, 19, 4147–4167. https://​doi.​org/​10.​1021/​acs.​biomac.​8b01138CrossRef
Zurück zum Zitat Rampichová, M., Buzgo, M., Mícková, A., Vocetková, K., Sovková, V., Lukásová, V., Filová, E., Rustichelli, F., & Amler, E. (2017). Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. International Journal of Nanomedicine, 12, 347–361. https://doi.org/10.2147/IJN.S120206CrossRef Rampichová, M., Buzgo, M., Mícková, A., Vocetková, K., Sovková, V., Lukásová, V., Filová, E., Rustichelli, F., & Amler, E. (2017). Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. International Journal of Nanomedicine, 12, 347–361. https://​doi.​org/​10.​2147/​IJN.​S120206CrossRef
Zurück zum Zitat Rubenstein, D. A., Venkitachalam, S. M., Zamfir, D., Wang, F., Lu, H., Frame, M. D., & Yin, W. (2010). In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets. Journal of Biomaterials Science, Polymer Edition, 21, 1713–1736. https://doi.org/10.1163/092050609X12559317149363CrossRef Rubenstein, D. A., Venkitachalam, S. M., Zamfir, D., Wang, F., Lu, H., Frame, M. D., & Yin, W. (2010). In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets. Journal of Biomaterials Science, Polymer Edition, 21, 1713–1736. https://​doi.​org/​10.​1163/​092050609X125593​17149363CrossRef
Zurück zum Zitat Spasova, M., Manolova, N., Paneva, D., Mincheva, R., Dubois, P., Rashkov, I., Maximova, V., & Danchev, D. (2009). Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules, 11, 151–159. https://doi.org/10.1021/bm901016yCrossRef Spasova, M., Manolova, N., Paneva, D., Mincheva, R., Dubois, P., Rashkov, I., Maximova, V., & Danchev, D. (2009). Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromolecules, 11, 151–159. https://​doi.​org/​10.​1021/​bm901016yCrossRef
Zurück zum Zitat Vatankhah, E., Prabhakaran, M. P., Semnani, D., Razavi, S., Morshed, M., & Ramakrishna, S. (2013). Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers, 101, 1165–1180. https://doi.org/10.1002/bip.22524CrossRef Vatankhah, E., Prabhakaran, M. P., Semnani, D., Razavi, S., Morshed, M., & Ramakrishna, S. (2013). Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers, 101, 1165–1180. https://​doi.​org/​10.​1002/​bip.​22524CrossRef
Zurück zum Zitat World Health Organization. (2020). Mask use in the context of COVID-19. World Health Organization. World Health Organization. (2020). Mask use in the context of COVID-19. World Health Organization.
Zurück zum Zitat Wu, T., Ding, M., Shi, C., Qiao, Y., Wang, P., Qiao, R., Wang, P., Qiao, R., Wang, X., & Zhong, J. (2020). Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering, resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters, 31, 617–625. https://doi.org/10.1016/j.cclet.2019.07.033CrossRef Wu, T., Ding, M., Shi, C., Qiao, Y., Wang, P., Qiao, R., Wang, P., Qiao, R., Wang, X., & Zhong, J. (2020). Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering, resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters, 31, 617–625. https://​doi.​org/​10.​1016/​j.​cclet.​2019.​07.​033CrossRef
Zurück zum Zitat Yao, Z.-C., Yang, Y.-H., Kong, J., Zhu, Y., Li, L., Chang, C., Zhang, C., Yin, J., Chao, J., Selaru, F. M., Reddy, S. K., & Mao, H.-Q. (2022). Biostimulatory micro-fragmented nanofiber-hydrogel composite improves mesenchymal stem cell delivery and soft tissue remodeling. Small, 18, 2202309. https://doi.org/10.1002/smll.202202309 Yao, Z.-C., Yang, Y.-H., Kong, J., Zhu, Y., Li, L., Chang, C., Zhang, C., Yin, J., Chao, J., Selaru, F. M., Reddy, S. K., & Mao, H.-Q. (2022). Biostimulatory micro-fragmented nanofiber-hydrogel composite improves mesenchymal stem cell delivery and soft tissue remodeling. Small, 18, 2202309. https://​doi.​org/​10.​1002/​smll.​202202309
Zurück zum Zitat Zaccagnini, F., Radomski, P., Sforza, M. L., Ziółkowski, P., Lim, S. I., Jeong, K.-U., Mikielewicz, D., Godman, N., Evans, D. R., Slagle, J., McConney, M. E., De Biase, D., Petronella, F., & De Sio, L. (2023). White light thermoplasmonic activated gold nanorod arrays enable the photo-thermal disinfection of medical tools from bacterial contamination. Journal of Materials Chemistry B. https://doi.org/10.1039/D3TB00865GCrossRef Zaccagnini, F., Radomski, P., Sforza, M. L., Ziółkowski, P., Lim, S. I., Jeong, K.-U., Mikielewicz, D., Godman, N., Evans, D. R., Slagle, J., McConney, M. E., De Biase, D., Petronella, F., & De Sio, L. (2023). White light thermoplasmonic activated gold nanorod arrays enable the photo-thermal disinfection of medical tools from bacterial contamination. Journal of Materials Chemistry B. https://​doi.​org/​10.​1039/​D3TB00865GCrossRef
Zurück zum Zitat Zakrzewska, A., Haghighat Bayan, M. A., Nakielski, P., Petronella, F., De Sio, L., & Pierini, F. (2022). Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks. ACS Applied Materials & Interfaces, 14, (2022) 46123–46144. https://doi.org/10.1021/acsami.2c10335 Zakrzewska, A., Haghighat Bayan, M. A., Nakielski, P., Petronella, F., De Sio, L., & Pierini, F. (2022). Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks. ACS Applied Materials & Interfaces, 14, (2022) 46123–46144. https://​doi.​org/​10.​1021/​acsami.​2c10335
Zurück zum Zitat Zhong, J., Li, Z., Takakuwa, M., Inoue, D., Hashizume, D., Jiang, Z., Shi, Y., Ou, L., Goni Nayeem, M. O., Umezu, S., Fukuda, K., & Someya, T. (2022). Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Advanced Materials, 34, 2107758. https://doi.org/10.1002/adma.202107758 Zhong, J., Li, Z., Takakuwa, M., Inoue, D., Hashizume, D., Jiang, Z., Shi, Y., Ou, L., Goni Nayeem, M. O., Umezu, S., Fukuda, K., & Someya, T. (2022). Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Advanced Materials, 34, 2107758. https://​doi.​org/​10.​1002/​adma.​202107758
Metadaten
Titel
Biomedical Applications of Nanomaterials
verfasst von
Alexander L. Yarin
Filippo Pierini
Eyal Zussman
Marco Lauricella
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48439-1_2