Skip to main content

2024 | OriginalPaper | Buchkapitel

Application of Artificial Neural Network in Impact and Crashworthiness: A Review

verfasst von : Dipjyoti Nath, Ankit, Debanga Raj Neog, Sachin Singh Gautam

Erschienen in: Recent Advances in Aerospace Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents an extensive review of the application of machine learning (ML) techniques, especially artificial neural networks (ANNs), in the realm of crashworthiness, hypervelocity impacts, and inverse analysis across various structural and aerospace domains. It delves into the prediction of stiffness matrices, contact stiffness, impact forces, and failure conditions, showcasing the potential of ML to streamline complex structural analysis processes. While the review highlights the predictive accuracies and computational efficiencies achieved by these methods, it also underscores the need for a more critical evaluation of model robustness, uncertainties, and real-world applicability. The review offers valuable insights into how ML can transform inverse analysis yet emphasizes the importance of addressing challenges and limitations to ensure the reliability and practicality of these innovative approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
2.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
3.
Zurück zum Zitat Liu X, Tian S, Tao F, Yu W (2021) A review of artificial neural networks in the constitutive modeling of composite materials. Comp B Eng 224:109152CrossRef Liu X, Tian S, Tao F, Yu W (2021) A review of artificial neural networks in the constitutive modeling of composite materials. Comp B Eng 224:109152CrossRef
4.
Zurück zum Zitat Ho LV, Nguyen DH, Mousavi M, De-Roeck G, Bui-Tien T, Gandomi AH, Wahab MA (2021) A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks. Comput Struct 252:106568CrossRef Ho LV, Nguyen DH, Mousavi M, De-Roeck G, Bui-Tien T, Gandomi AH, Wahab MA (2021) A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks. Comput Struct 252:106568CrossRef
5.
Zurück zum Zitat Ozarde AP, Narayan J, Yadav D, McNay GH, Gautam SS (2020) Optimization of diesel engine’s liner geometry to reduce head gasket’s fretting damage. SAE Int J Engines 14:81–97 Ozarde AP, Narayan J, Yadav D, McNay GH, Gautam SS (2020) Optimization of diesel engine’s liner geometry to reduce head gasket’s fretting damage. SAE Int J Engines 14:81–97
6.
Zurück zum Zitat Gautam SS, Khan K (2020) Detection of fretting fatigue using machine learning algorithms. In: 3rd structural integrity conference and exhibition (SICE 2020) structural integrity at multiple length scales (e-conference), December 14–16, IIT Bombay, Guwahati, Assam, India Gautam SS, Khan K (2020) Detection of fretting fatigue using machine learning algorithms. In: 3rd structural integrity conference and exhibition (SICE 2020) structural integrity at multiple length scales (e-conference), December 14–16, IIT Bombay, Guwahati, Assam, India
7.
Zurück zum Zitat Vithalbhai SK, Gautam SS (2021) A machine learning approach to fretting fatigue problem. In: Proceedings of the international conference on futuristic technologies (e-conference) - structural health monitoring, energy harvesting, green Material and Biomechanics, January 22–24, IIT Delhi, New Delhi, India Vithalbhai SK, Gautam SS (2021) A machine learning approach to fretting fatigue problem. In: Proceedings of the international conference on futuristic technologies (e-conference) - structural health monitoring, energy harvesting, green Material and Biomechanics, January 22–24, IIT Delhi, New Delhi, India
8.
Zurück zum Zitat Saikia BB, Nath D, Gautam SS (2023) Application of machine learning in efficient stress recovery in finite element analysis. Mater Today Proceed 78:359–363CrossRef Saikia BB, Nath D, Gautam SS (2023) Application of machine learning in efficient stress recovery in finite element analysis. Mater Today Proceed 78:359–363CrossRef
9.
Zurück zum Zitat Saikia BB, Nath D, Gautam SS (2024) Machine learning models for stress recovery in finite element method. Recent Trends in Computational Mechanics and Simulation: Select proceedings of ICCMS 2022, Springer, Singapore (in press) Saikia BB, Nath D, Gautam SS (2024) Machine learning models for stress recovery in finite element method. Recent Trends in Computational Mechanics and Simulation: Select proceedings of ICCMS 2022, Springer, Singapore (in press)
10.
Zurück zum Zitat Vithalbhai SK, Nath D, Agrawal V, Gautam SS (2022) Artificial neural network assisted numerical quadrature in finite element analysis in mechanics. Mater Today Proceed 66:1645–1650CrossRef Vithalbhai SK, Nath D, Agrawal V, Gautam SS (2022) Artificial neural network assisted numerical quadrature in finite element analysis in mechanics. Mater Today Proceed 66:1645–1650CrossRef
11.
Zurück zum Zitat Chinchkar R, Nath D, Gautam SS (2023) Design of efficient quadrature scheme in finite element using deep learning. Advances in Engineering Design: Select Proceedings of FLAME 2022. Springer, Singapore, pp 21–29 Chinchkar R, Nath D, Gautam SS (2023) Design of efficient quadrature scheme in finite element using deep learning. Advances in Engineering Design: Select Proceedings of FLAME 2022. Springer, Singapore, pp 21–29
12.
Zurück zum Zitat Nath SS, Nath D, Gautam SS (2023) Design of efficient finite elements using deep learning approach. Advances in Engineering Design: Select Proceedings of FLAME 2022. Springer, Singapore, pp 11–20 Nath SS, Nath D, Gautam SS (2023) Design of efficient finite elements using deep learning approach. Advances in Engineering Design: Select Proceedings of FLAME 2022. Springer, Singapore, pp 11–20
13.
Zurück zum Zitat Nath SS, Nath D, Gautam SS (2024) Efficient stiffness matrix in finite element method using deep learning for linear elasticity. Recent Trends in Computational Mechanics and Simulation: Select proceedings of ICCMS 2022, Springer, Singapore (in press) Nath SS, Nath D, Gautam SS (2024) Efficient stiffness matrix in finite element method using deep learning for linear elasticity. Recent Trends in Computational Mechanics and Simulation: Select proceedings of ICCMS 2022, Springer, Singapore (in press)
14.
Zurück zum Zitat Ankit, Nath D, Sauer RS, Gautam SS (2023) Evaluating the performance of different optimizers for deep learned finite elements. 6th national conference on multidisciplinary design, analysis and optimization (NCMDAO 2023). December 6–8, IIT Guwahati, Guwahati, Assam, India Ankit, Nath D, Sauer RS, Gautam SS (2023) Evaluating the performance of different optimizers for deep learned finite elements. 6th national conference on multidisciplinary design, analysis and optimization (NCMDAO 2023). December 6–8, IIT Guwahati, Guwahati, Assam, India
15.
Zurück zum Zitat Jung J, Yoon K, Lee PS (2020) Deep learned finite elements. Comput Meth Appl Mech Eng 372:113401 Jung J, Yoon K, Lee PS (2020) Deep learned finite elements. Comput Meth Appl Mech Eng 372:113401
16.
Zurück zum Zitat Gouravaraju S, Narayan J, Sauer RA, Gautam SS (2023) A Bayesian regularization-backpropagation neural network model for peeling computations. J Adhesion 99(1):92–115CrossRef Gouravaraju S, Narayan J, Sauer RA, Gautam SS (2023) A Bayesian regularization-backpropagation neural network model for peeling computations. J Adhesion 99(1):92–115CrossRef
17.
Zurück zum Zitat Nath D, Neog DR, Gautam SS (2024) Application of machine learning and deep learning in finite element analysis: a comprehensive review. Arch Comput Meth Eng 1–40 Nath D, Neog DR, Gautam SS (2024) Application of machine learning and deep learning in finite element analysis: a comprehensive review. Arch Comput Meth Eng 1–40
18.
Zurück zum Zitat Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge
19.
20.
Zurück zum Zitat Palleti HNKT, Gurusamy S, Kumar S, Soni R, John B, Vaidya R, Bhoge A, Naik NK (2012) Ballistic impact performance of metallic targets. Mater Des 39:253–263CrossRef Palleti HNKT, Gurusamy S, Kumar S, Soni R, John B, Vaidya R, Bhoge A, Naik NK (2012) Ballistic impact performance of metallic targets. Mater Des 39:253–263CrossRef
21.
Zurück zum Zitat Ambrósio J (2014) Automotive structural crashworthiness and occupant protection. In: Road and off-road vehicle system dynamics handbook. CRC Press, pp 1611–1662 Ambrósio J (2014) Automotive structural crashworthiness and occupant protection. In: Road and off-road vehicle system dynamics handbook. CRC Press, pp 1611–1662
22.
Zurück zum Zitat Ambrosio JAC (2001) Crashworthiness: energy management and occupant protection, vol 423. Springer, New YorkCrossRef Ambrosio JAC (2001) Crashworthiness: energy management and occupant protection, vol 423. Springer, New YorkCrossRef
23.
Zurück zum Zitat Omar T, Eskandarian A, Bedewi N (1998) Vehicle crash modelling using recurrent neural networks. Math Comput Model 28(9):31–42CrossRef Omar T, Eskandarian A, Bedewi N (1998) Vehicle crash modelling using recurrent neural networks. Math Comput Model 28(9):31–42CrossRef
24.
Zurück zum Zitat Pawlus W, Karimi HR, Robbersmyr KG (2013) Data-based modeling of vehicle collisions by non-linear autoregressive model and feedforward neural network. Inform Sci 235:65–79CrossRef Pawlus W, Karimi HR, Robbersmyr KG (2013) Data-based modeling of vehicle collisions by non-linear autoregressive model and feedforward neural network. Inform Sci 235:65–79CrossRef
25.
Zurück zum Zitat Kohar CP, Greve L, Eller TK, Connolly DS, Inal K (2021) A machine learning framework for accelerating the design process using CAE simulations: an application to finite element analysis in structural crashworthiness. Comput Methods Appl Mech Eng 385:114008MathSciNetCrossRef Kohar CP, Greve L, Eller TK, Connolly DS, Inal K (2021) A machine learning framework for accelerating the design process using CAE simulations: an application to finite element analysis in structural crashworthiness. Comput Methods Appl Mech Eng 385:114008MathSciNetCrossRef
26.
Zurück zum Zitat Lanzi L, Bisagni C, Ricci S (2004) Neural network systems to reproduce crash behavior of structural components. Comput Struct 82(1):93–108CrossRef Lanzi L, Bisagni C, Ricci S (2004) Neural network systems to reproduce crash behavior of structural components. Comput Struct 82(1):93–108CrossRef
27.
Zurück zum Zitat Wingrove AL (1973) The influence of projectile geometry on adiabatic shear and target failure. Metall Trans 4:1829–1833CrossRef Wingrove AL (1973) The influence of projectile geometry on adiabatic shear and target failure. Metall Trans 4:1829–1833CrossRef
28.
Zurück zum Zitat KılıÇ N, Ekici B, Hartomacıoğlu S (2015) Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools. Def Technol 11(2):110–122CrossRef KılıÇ N, Ekici B, Hartomacıoğlu S (2015) Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools. Def Technol 11(2):110–122CrossRef
29.
Zurück zum Zitat Neto LB, Saleh M, Pickerd V, Yiannakopoulos G, Mathys Z, Reid W (2020) Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings. Int J Impact Eng 137:103461CrossRef Neto LB, Saleh M, Pickerd V, Yiannakopoulos G, Mathys Z, Reid W (2020) Rapid mechanical evaluation of quadrangular steel plates subjected to localised blast loadings. Int J Impact Eng 137:103461CrossRef
30.
Zurück zum Zitat Bobbili R, Ramakrishna B, Madhu V (2020) An artificial intelligence model for ballistic performance of thin plates. Mech Based Des Struct Mach 12:1–12 Bobbili R, Ramakrishna B, Madhu V (2020) An artificial intelligence model for ballistic performance of thin plates. Mech Based Des Struct Mach 12:1–12
31.
Zurück zum Zitat Becker M, Klavzar A, Wolf T, Renck M (2022) Data-driven prediction of plate velocities and plate deformation of explosive reactive armor. Def Technol 18(12):2141–2149CrossRef Becker M, Klavzar A, Wolf T, Renck M (2022) Data-driven prediction of plate velocities and plate deformation of explosive reactive armor. Def Technol 18(12):2141–2149CrossRef
32.
Zurück zum Zitat Dennis AA, Pannell JJ, Smyl DJ, Rigby SE (2021) Prediction of blast loading in an internal environment using artificial neural networks. Int J Protect Struct 12(3):287–314CrossRef Dennis AA, Pannell JJ, Smyl DJ, Rigby SE (2021) Prediction of blast loading in an internal environment using artificial neural networks. Int J Protect Struct 12(3):287–314CrossRef
33.
Zurück zum Zitat Saxena A, Kumaraswamy A, Kotkunde N, Suresh K (2019) Constitutive modeling of high-temperature ow stress of armor steel in ballistic applications: a comparative study. J Mater Eng Perform 28:6505–6513CrossRef Saxena A, Kumaraswamy A, Kotkunde N, Suresh K (2019) Constitutive modeling of high-temperature ow stress of armor steel in ballistic applications: a comparative study. J Mater Eng Perform 28:6505–6513CrossRef
34.
Zurück zum Zitat Ryan S, Thaler S, Kandanaarachchi S (2016) Machine learning methods for predicting the outcome of hypervelocity impact events. Exp Syst Appl 45:23–39CrossRef Ryan S, Thaler S, Kandanaarachchi S (2016) Machine learning methods for predicting the outcome of hypervelocity impact events. Exp Syst Appl 45:23–39CrossRef
35.
Zurück zum Zitat Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press
36.
Zurück zum Zitat Thompson S, Teixeira-Dias F, Paulino M, Hamilton A (2022) Ballistic response of armour plates using generative adversarial networks. Def Technol 18(9):1513–1522CrossRef Thompson S, Teixeira-Dias F, Paulino M, Hamilton A (2022) Ballistic response of armour plates using generative adversarial networks. Def Technol 18(9):1513–1522CrossRef
37.
Zurück zum Zitat Goodfellow IJ, Abadie JP, Mirza M, Xu B, Farley DW, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inform Process Syst 14:27 Goodfellow IJ, Abadie JP, Mirza M, Xu B, Farley DW, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inform Process Syst 14:27
38.
Zurück zum Zitat Thompson S, Teixeira-Dias F, Paulino M, Hamilton A (2022) Predictions on multi-class terminal ballistics datasets using conditional generative adversarial networks. Neural Netw 154:425–440CrossRef Thompson S, Teixeira-Dias F, Paulino M, Hamilton A (2022) Predictions on multi-class terminal ballistics datasets using conditional generative adversarial networks. Neural Netw 154:425–440CrossRef
39.
Zurück zum Zitat Bao J, Liu L, Cao J (2022) Vibration-based hypervelocity impact identification and localization. Front Inform Technol Electr Eng 23(4):515–529CrossRef Bao J, Liu L, Cao J (2022) Vibration-based hypervelocity impact identification and localization. Front Inform Technol Electr Eng 23(4):515–529CrossRef
40.
Zurück zum Zitat Ni Z (2022) Reframe the field of aerospace engineering via machine learning: application and comparison. J Phys Confer Ser 2386:012031CrossRef Ni Z (2022) Reframe the field of aerospace engineering via machine learning: application and comparison. J Phys Confer Ser 2386:012031CrossRef
41.
Zurück zum Zitat Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe
42.
Zurück zum Zitat Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer, New York Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer, New York
43.
Zurück zum Zitat Roy DNG, Couchman LS (2001) Inverse problems and inverse scattering of plane waves. Academic Press, New York Roy DNG, Couchman LS (2001) Inverse problems and inverse scattering of plane waves. Academic Press, New York
44.
Zurück zum Zitat Szewczyk ZP, Hajela P (1994) Damage detection in structures based on feature-sensitive neural networks. J Comput Civil Eng 8(2):163–178CrossRef Szewczyk ZP, Hajela P (1994) Damage detection in structures based on feature-sensitive neural networks. J Comput Civil Eng 8(2):163–178CrossRef
45.
Zurück zum Zitat Hattori G, Serpa AL (2015) Contact stiffness estimation in ANSYS using simplified models and artificial neural networks. Finite Elements Anal Des 97:43–53CrossRef Hattori G, Serpa AL (2015) Contact stiffness estimation in ANSYS using simplified models and artificial neural networks. Finite Elements Anal Des 97:43–53CrossRef
46.
Zurück zum Zitat Chandrashekhara K, Okafor AC, Jiang YP (1998) Estimation of contact force on composite plates using impact-induced strain and neural networks. Comp B Eng 29(4):363–370CrossRef Chandrashekhara K, Okafor AC, Jiang YP (1998) Estimation of contact force on composite plates using impact-induced strain and neural networks. Comp B Eng 29(4):363–370CrossRef
47.
Zurück zum Zitat Hashemi R, Kargarnovin MH (2007) Vibration base identification of impact force using genetic algorithm. Int J Mech Syst Sci Eng 1(4):204–210 Hashemi R, Kargarnovin MH (2007) Vibration base identification of impact force using genetic algorithm. Int J Mech Syst Sci Eng 1(4):204–210
48.
Zurück zum Zitat Yan G, Zhou L (2009) Impact load identification of composite structure using genetic algorithms. J Sound Vibr 319(3–5):869–884CrossRef Yan G, Zhou L (2009) Impact load identification of composite structure using genetic algorithms. J Sound Vibr 319(3–5):869–884CrossRef
49.
Zurück zum Zitat LeClerc JR, Worden WJ, Staszewski K, Haywood J (2007) Impact detection in an aircraft composite panel A neural-network approach. J Sound Vibr 299(3):672–682CrossRef LeClerc JR, Worden WJ, Staszewski K, Haywood J (2007) Impact detection in an aircraft composite panel A neural-network approach. J Sound Vibr 299(3):672–682CrossRef
50.
Zurück zum Zitat Ren S, Chen G, Li T, Chen Q, Li S (2018) A deep learning-based computational algorithm for identifying damage load condition: an artificial intelligence inverse problem solution for failure analysis. Comput Model Eng Sci 117(3):287–307 Ren S, Chen G, Li T, Chen Q, Li S (2018) A deep learning-based computational algorithm for identifying damage load condition: an artificial intelligence inverse problem solution for failure analysis. Comput Model Eng Sci 117(3):287–307
51.
Zurück zum Zitat Chen G, Li T, Chen Q, Ren S, Wang C, Li S (2019) Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. Comput Mech 64:435–449MathSciNetCrossRef Chen G, Li T, Chen Q, Ren S, Wang C, Li S (2019) Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures. Comput Mech 64:435–449MathSciNetCrossRef
52.
Zurück zum Zitat Zhou JM, Dong L, Guan W, Yan J (2019) Impact load identification of non-linear structures using deep recurrent neural network. Mech Syst Sig Process 133:106292CrossRef Zhou JM, Dong L, Guan W, Yan J (2019) Impact load identification of non-linear structures using deep recurrent neural network. Mech Syst Sig Process 133:106292CrossRef
Metadaten
Titel
Application of Artificial Neural Network in Impact and Crashworthiness: A Review
verfasst von
Dipjyoti Nath
Ankit
Debanga Raj Neog
Sachin Singh Gautam
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1306-6_32

    Premium Partner